PROJEKT BUDOWLANY

Inwestycja	TERMOMODERNIZACJA I PRZEBUDOWA BUDYNKU PRZEDSZKOLA PUBLICZNEGO W ŁOBZZENICY WRAZ Z ROBOTAMI BUDOWLANYMI TOWARZYSZACYMI
Inwestor:	GMINA ŁOBŻENICA, UL. SIKORSKIEGO 7, $89-310$ ŁOBŻENICA
Kategoria obiektu budowlanego	IX
Lokalizacja:	UL. BATOREGO 5, DZ. NR 49 89-310 ŁOBŻENICA

Projektant:	Sprawdzający:
Architektura	
 Czione inty Acriverión KPOM-Nr Evie. KP. 0137	Członek Izby Architektów KPOIA-KP-9030
Konstrukcja :	
mgr inz. Miroslaw Młynarek upravnid didudowlane nr kep/od Newok/15 do projentow qua ikierowania robotami budo wla yymi bez ograniczeń w specijalności konctyukcyino-budowlanej	
Instalacje sanitame:	
mgrifz. Piotr Boczan upr, bud. da proddapwonia i kierowania robotomi gazomy f, wodocqgowyd i konaizocyinych Nr awid: XUP/0145/PWOS/13	mgr int. Ptot Mlunarek UPR. BUD. NANLPMos/PWOS/14 do prujuktownais ; kierowanais гobolami budowlanymi bez ograniczen w spacidmosci ins'alacyinej wzakresie gazowych. wod ecigoowy ch i kanalizacyingch
Instalacje elektryczne:	

Nakło nad Notecią, 10.03.2016|zaint Architektury i Budownictwa

	ZAWARTOŚC OPRACOWANIA			
L.P.				Nr strony
1.	Strona tytułowa			1
	Spis zawartości opracowania			2
II.	Dokumenty formalno-prawne			5-115
III.	Projekt zagospodarowania terenu			16-19
IV.	Ekspertyza techniczna			20.25
V.	Opis techniczny 1. Dane ogólne. 2. Szczególowy zakres prac objętych opracowaniem. 3. Technologia wykonania termomodernizacij ścian budynku Centrum Profilaktyki i Aktywności Spolecznej. 4. Ochrona przeciwpożarowa. 5. Uwagi końcowe. 6. Dokumentacja fotograficzna. 7. Informacja dotyczaca bezpieczeństwa i ochrony zdrowia.			$26-37$
VI.	Inwentaryzacja - rysunki techniczne			38-44
	Nr rysunku	Tytur rysunku	Skala	
	$1-01$	Rzut piwnicy	1:100	39
	I-02	Rzut parteru	1:100	40
	1-03	Rzut piętra	1:100	41
	1-04	Rzut dachu	1:100	42
	1-05	Elewacje I	1:100	43
	-06	Elewacje II	1:100	4ζ
VII.	Architektura - rysunki techniczne			45~64
	Nr rysunku	Tytur ysunki	Skala	
	A-01	Rzut piwnicy	1:100	46
	A-02	Rzut parteru	1:100	47
	A-03	Rzut pietra	1:100	48
	A-04	Rzut dachu	1:100	49
	A-05	Rzut przyziemia	1:150	50

OŚWIADCZENIE

Na podstawie art. z art. 20 ust. 4 ustawy z dnia 7 lipca 1994 roku Prawo budowlane (tekst jednolity: Dz. U. Nr 207, poz. 2016 z 2003 r. z późn. zm.) oświadczamy, iz niniejszy projekt budowlany termomodernizacji i przebudowy budynku przedszkola publicznego w Łobżenicy wraz z robotami budowlanymi towarzyszącymi, na działce nr 499 w kobżenicy został sporządzony zgodnie z obowiązującymi przepisami oraz zasadami wiedzy technicznej.

Nakło nad Notecią, 10.03.2016

II. DOKUMENTY FORMALNO-PRAWNE

Bydgoszon，dnia 7 maja 197^{1} I．

Uprawnienia budowlane

Na podstawie art．18，art． 10 ust．I pkt． 11 art． 20 口gt． 1 ustawy z dufa 31 styczaia
 reaporządzenia Przewodniczącego Komitetu Budewnictwa Urbanistylii i Architektury z dnia

Ob． \qquad
magiater tnomiex erehtuait
urounty dnin 25 czexwea 1942 r．Bydgoazez

$$
\text { ofrz } \mathrm{f} \text { mitye }
$$

uprawnienie budowlane da sporgadsanta proileltów bucow Ianyclín
 projejeto budow Fanreh konstrukeyjreh 8 writatictem
 keji－projeletów Inatialacti i urxadxet santtemnch

$I \angle B A$ ARCHITEKTOH

Kujawsko-Pomorska Okregowa Rada Izby Architektów RP

ZASWLADCZENIE - ORYGINAK.
 (wryple z listy architbelctown)

Kujawsko-Pomorska Okregowa Rada l2by Archltelatow RP zaswiadcza, ze: mogr int. arch. Maria ANDRZEJEWSNA-SLOSECKA
posiadajaca kwallifkacje zawodowe do pelnienia samodzielnych funkçl techniczrych w budownictwie w specjainojel architektonicznej I w zalcresie postadanych uprawnień nr 198/71, est wpisana na thete czlonków Kufawsko-Pornorskiet Okregowej Izby Architektów RP pod numerem: KP-0137.

Cztanek caynry od: 04-03-2002 r.

Data I rnlejsce wygenerowania zaswiadczenla: 28-12-2015 r. Bydgoszcz.
Zaswladcrenie jest wazne do dnla: 30-96-2016.
Podpisano elektronicznie w systemie informatyczoym Izby Architektów RP przez: Anne Pawli-ka-Taboiszç, Przewodniczące Okregowej Rady Izby Archibektów RP.
ivi weryfikacyiny zaswiadczenia
KP-0137-42F2-Y9E9-15EB-551A

[^0]

Prerrdium
Wojewidaiciej Rariy Marodowej
W juirial Gospodarti Pruestriennej
i Geburony Srodowisàa w Bydgoszexy
Nr ewid uprawni335/72 Be

Uprawnienia budowlane

Na podstawie art. 18, art. 19 ust. 1 pict. I i art. 20 ust. 1 ustawy z doia 31 stycmmia
 dzenia Preewodniczacego Komitetu Budownictwa, Urbanistyki i Architektary 2 is Wreesnia 1962 r. w sprawie kwalitikacji fachowych osón wykonujacych funkcje tech W budownictwie powszechnym (Dz. प. Nr 53, por. 266)
 \qquad

otrzymuje
W specjalnosci a-cinttektonicznes
uprawnienia budowlane do sporzadzanta projeletúv budowlanycin
architertontczarch waselkich obiektów budowlanych,

orojelrutw obielttio budowlanych o akumplikowanej ronstrukefi, projektów instalacili it arzadzen sanitar-

Kujawsko-Pomorska Okregowa Rada Izby Architektów RP

ZAŚWIADCZENIE - ORYGINAL
 (wypis z listy architektobw)

Kujawsko-Pomorska Okregowa Rada Izby Architektơw RP zaswiadcza, ze: mgr inz arch. Krystyma Barbara MISzCZuK
posiadajaca ikwalifikacje zawodowe do pelnienia samodzielnych funkcji technicznych w budownictwie w specjalnośd architektonicznej i w zakresie posiadanych uprawnlen $\mathrm{nr} 335 / 72 \mathrm{Bg}$, jest wpisana na listę członków Kujawsko-Pomorskiej Okregowej Izby Architektów RP pod numerem: KP-0030.

Catonek czynny od: 04-03-2002 r.

Data 1 miejsce wygenerowania zaświadczenia: 05-01-2016 r. Bydgoszcz.
Zaswiadczenie iest wazne do dnia: 31-03-2016.
Podpisano elektronicznie w systemie informatycanym lzby Architektów RP przez Anna Pawlicka-Zabojszcz, Przewodniczaca Okregowej Rady Izby Architektów RP.

Nr weryfikacyjny zaświadczenia:

KP-0030-4B24-24A6-66Y1-Y63E

[^1]
\[

$$
\begin{aligned}
& G A B N B= \\
& \text { WZMBRSKA } \\
& \text { OKREROWA } \\
& \text { I Z B A } \\
& \text { INZYNIEROWV }
\end{aligned}
$$
\]

BUCOMNICTNA
OKREGOWA KONEIB JA KKWALFIKACYJNA
Sygn akt KUPOIB/KK-0054-0014/15 KUPOIIB/KK-0055-0026/15

DECYZJA

Na podstawe art 24 ust. 1 pkt 2 ustawy z dnia 15 grudma 2000 o o samorzadach zawodowych architektow oraz inzynierow budownictwa (Dz $U=2014 \mathrm{r}$. paz 1946), art 12 ust $1 \mathrm{pkt} 1,2$, ust 2 ; ust 3 i ust. 4 ce pkt 3 , art 13 ust 1. ust 2. ust 3 , ust 4 , art 14 ust 1 pkt 2 i ust 3 pkt 5 ustawy z dnia 7 lipca 1994 r. - Prawo budowiane (Dz $U z$ 2013 r , poz 1409 z pozn zm) oraz $\mathrm{\delta} 10+\mathrm{\xi} 12$ ust 1 mozporgadzenia Ministra infrastruktury 1 Rozwoju z dnia 11
 zwiazku z ant 104 Kodeksu postepowania administracyjnego ($\mathrm{Dz} U$ z 2013 r . poz 267) po ustaleniu: ze zostaiy spelnione warunkı w zakresie przygotowania zawodowego oraz po zlozeniu egzaminu na uprawnienia budowlane z wynikiem porytuwnym

Pan Miroslaw Sebastian MHynarek
 magister inzynier o kierunku budownictwo
 ur dria 08 stycznia 1989 r w Nakle nad Notecia
 otrzymuje

UPRAWNNIENIA BUDOWLANE nurner ewidencyjny KUP/0051/PWOK/15
do projelctowenie ; kierowanla robotami buđowianymi bez ograniczen w specjalnosici konstrukcyjno - budowlanej

UZASADNIENIE

W zwiazku z uwzglẹdnieniem w calosci zadania strony, na podstawie an 107 § 4 Kodeksu postepowania administracyjnego ($\mathrm{Dz} U \quad \mathrm{Z} 2013 \mathrm{r}$ poz 267) odstepuje sie od uzasadnienia decyzu Zakres nadanych uprawmien budowlanych wskazano na odwrocie decyzji

Pouczenie

[^2]Skład Orzekajacy
Okregowej Komisji Kwalifikacyine

> mgl inz acek Koroczlel

```
Otrzymuja
} Pan Mirostaw Sebastian Mrynarek
    44.Nont/da 14
    89-100 Nakto nad Noterua
2.Okregowe Raga Izby
3.G+owny Inspektor
    Nadzoru Budowlanego
4 a/a
```

Zaświadczenie
o numerze weryflikacyinym:
KUP-UYM-FUX-1LX*

Abstract

Pan Mirosław Młynarek o numerze ewidencyjnym KUP/BO/0103/15 adres zamieszkania ul. Norwida 14, 89-100 Nakło n/Notecia jest członkiem Kujawsko-Pomorskiej Okręgowej łzby Inżynierów Budownictwa i posiada wymagane ubezpieczenie od odpowiedzialności cywilnej. Niniejsze zaświadczenie jest ważne do dnia 2016-08-31.

Zaswiadczenie zostało wygenerowane elektronicznie i opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu w dniu 2015-09-01 roku przez:

Adam Podhorecki, Przewodniczący Rady Kujawsko-Pomorskiej Okręgowej Izby Inžynierów Budownictwa
(Igodnie art. 5 ust 2 ustawy z dnia 18 września 2001 r. o podpisie elektronicznym (Dz. U. 2001 Nr 130 poz 1450) dane w postaci elektranicznel opatrane bezpuecanym podipsem elektronicrnym werytikowanym pray pomocy waźnego kwalifikowanego certylikatu se

[^3]Sygn. akt: KUPOIB/KK-0054-0052/15
Bydgerzez, dnia 17 czerwca 2015 r.

DECYZJA

Na podstawie art. 24 ust. 1 pkt 2 ustawy z dnla 15 grudnia 2000 r. 0 samorzadach zawodowych architoktów oraz inzynierow budownictwa (Dz. U. 22014 r., poz. 1448), art 12 ust. 1 plat 1, ust. 2, ust. 31 ust. 4c pht 1, art. 13. ust. 1. ust 21 ust 4, art. 14 ust. 1 pkt 21 ust. 3 pht 1 ustawy z dial 7 lipca 1994 f - Prawo budowlane (Dz. U. $22013 \mathrm{r}, \mathrm{poz}$. 1409 z potn. zm.) oraz s 101 S 12 ust. 1 rozporzadzenia Ministra infrastruktury i Rozwoju z dnia 11 wrzesnia 2014 r. w sprawie samodzietnych funkcji technicznych w budownictwie (Dz. U. z 2014 r. poz. 1278) w zwigzku z art. 104 Kodeksu postepowania administracyinego (Dz. U. z2013 r., poz. 267), po ustaleniu, ze zostaly speinione warunki w zakresie przygotowania zawodowego oraz po zlozeniu egzaminu na uprawnienia budowiane z wynikiem pozytywnym,

Pan Bartiomisj Lacheta
 magister inzynier o kierunku budownictwo
 ur. dnia 17 lipca 1979 r. w Nakle nad Notecia
 otramuje
 UPRAWNIENIA BUDOWLANE
 numer ewidencyiny KUP/0005/POOK15

 do projektowanie bez ograniezeń

 do projektowanie bez ograniezeń w specjilnosei konstrukcyine - budowlanej

 w specjilnosei konstrukcyine - budowlanej}

UZASADNIENIE

W zwiazku z unzglednieniem w calości zqdania strony, na podstawie art. 107 \& 4 Kodeksu postepowania administracyjnego (Dz. U. z 2013 r., poz. 267) odstepuje sieg od uzasadnienia decyzii. Zakres nadanych uprawnień budowlanych wskazano na ochrocie decyzji.

Pouczenie

1. Zgodnie z art. 12 ust. 7 ww . ustawy Prawo budowlane - podstawe do wykonywania samodzielnych funkcji technicznych w budownictwie stanowi wpis do centralnego rejestru Gbownego inspektora Nadzoru Budowlanego oraz wpis na liste cztonków wasciwej izby samorzadu zawodowego.
2. Oof niniejszej decyzji stuzy odwolanie do Krajowej Komisji Kwalifikacyinej Polskiej Izby Inzynientw Budownictwa w Warszawie, za posrednictwem Kujawsko-Pomorskiej Okregowej lzby Inzyniertw Budownictwa w Bydgoszazy w terminie 14 dni od daty jej doręczenia.

Otrzymuja:

1. Pan Barthomiej kacheta ui. Wrzosowa 3
89-100 Występ
2. Okregowa Rada Izby
3. Gowny Inspektor Nadzoru Budowlanego
4. ala

POLSKA
$1 \quad 2 \quad B \quad A$
INĖYNIEROW
sudownictua
Bydgoszaz 2015-12-10
(imiopsonwolc (tata)

Zaświadczenie

Pan/Pani EACHETA BARTLOMIEJ

miejsce zamieszkania
89-100 WYSTĘP
UL. WRZOSOWA 3
jest członkiem Kujawsko-Pomorskiej
Okregowej lzby inżynierớw Budownictwa
o numerze ewidencyjnym
KUPROM032108
i posiada wymagane ubezpieczenta od odpowiedzialności
cywinej
$\begin{array}{rr}\text { Niniejsze zaświadczenie jest waźne od dnia } & \text { 2016-02-01 } \\ \text { do dnia } & \text { 2017-01-31 }\end{array}$

> KIJJWVSHO FDNORSNA OKREGOWA
> IZ8A INZYNIEROW BUDOWNICTWA
> A5-030 BYOEO5?
POTEWODNICZACY Rady Owregomejizby
prof dr hat in dour Po bhoraciin

KUJAWSKO
POMORSKA
OKREGOWA
1 Z B A
INZYNIEROW BUDOMNICTVA
OKRĘGOWA KOMISJA KWALIFIKACYJNA
Bydgoszcz, dnia 18 czerwca 2014 r.
Sygn. akt: KUPOIIB/KK-0054-0028/14

KUPOIIB/KK-0055-0060/14

DECYZJA

Na podstawie art. 24 ust. 1 pkt 2 ustawy z dnia 15 grudnia 2000 r. o samorzadach zawodowych architektow, inżyierów budownictwa oraz urbanistów (Dz. U. z 2001 r. Nr 5, poz. 42, z pózn. zm.), att. 13 ust. 1 pkt 1.122 i ust. 2, art. 14 ust. 1 pkt 4 i. ust. 3 pkt 1 i 3 ustawy z dnia 7 lipca 1994 r: Prawo budowlane (tekst jednolity: Dz. U. 22013 r., poz. 1409, z.pozn. zm.) oraz \& 11 ust. 1 pkt 1 rozporządzenia Ministra Transportu I Budownictwa z dnia 28 kivietnia 2006 r. w sprawie samodzielnych funkcji technicznych w budownictwie (Dz. U. z. 2006 r . Nr 83, poz. 578,2 pózn. zm.) w zwiazku z art. 104 Kodeksu postępowania administracy.jnego (Dz. U. z 2013 r. Nr 98, poz. 267, z pózn. zm:), po ustaleniu, że zostały spetnione warunki w zakresie przygotowania zawodowego oraz po złożeniu egzaminu na uprawnienia budowlane z wynikiem pozytywnym,

Pan Piotr Tomasz Młynarek
magister inżynier o kierunku inżynieria środowiska ur. dnia 21 grudnia 1975 r. w Nakle nad Notecią
otraymuje

UPRAWNIENIA BUDOWLANE

numer ewidencyjny KUP/0059/PWOS/14
do projektowania i kierowania robotami budowlanymi bez ograniczeń w specjalnosci instalacyjnej w zakresie sieci, instalacjli urządzeń cieplinych, wentylacyjnych, gazowych, wodociagowych i kanalizacyinych

UZASADNIENIE

W zwiazzu z uwzględnieniem w całości żądania strony, na podstawie ant. 107 § 4 K.p.a. odstępuje się od uzaşadnienia decyzji. Zakres nadanych uprawnień budowlanych wskazàno na odwrocie decyzji.

Poúczenie

Od niniejszej decyzil stužy odwolạie do Krajowej Komisji Kwalifikacyinej Polskiej Izby Inżynierów Budownictwa w Warszawie, za pośrednictwem Okręowej Komisji Kwalifikacyjnej KUPOIIB w Bydgoszazy w terminie 14 dni od. dnia jej doręczenia.

Skład Orzekajacy Okreqgowel Komisji Kwalfikacyinei/

> mgr inz. Jacek Kolodziej
inż. Wojciech Klatecki
Inz. Pawet Gonczerzewicz
Otryymuja:

1. Pan Piotr Tomasz Mlynarek ul. Topolowa 14, Wystep 89-100 Naklo n. Notecia
2. Okregowa Rada. Izby
3. Głwny Inspektor Nadzorui Budowlanego

Zaświadczenie
o numerze weryfikacyinym.

KUP-QZ7-SI7-EE9 *

Pan Piotr Mitynarek o numerze ewidencyjnym KUP/IS/0105/14 adres zamieszkania ul. Topolowa 14, 89-100 Występ
jest członkiem Kujawsko-Pomorskiej Okręgowei Izby fnżynierów Budownictwa i posiada wymagane ubezpieczenie od odpowiedzialności cywilnej.
Niniejsze zaświadczenie jest ważne do dnia 2016-08-31.

Zaświadczenie zostato wygenerowane elektronicznie i opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy waìnego kwalifikowanego certyfikatu w dniu 2015-07-03 roku przez:

Adam Podhorecki, Przewodniczạcy Rady Kujawsko-Pomorskiej Okręgowej Izby Inžynierów Budownictwa.
(7godnie art. 5 ust 7 ustawy z dnia 18 wrzeṡnia 2001 r o podpisie elektronicznym (D7. (1) 2001 Nr 130 poz. 1450) dane w pastac elektronicznej opatrzone bexpiecanym podpisem elektroncznym weryfkowanym przy pomocy waźnego kwallfikowarego certytikatu sa rownowazne pod wzgledem skutkow prawnych dokumentom opatrzonym podpisami whasnorecznymi.

[^4]KUJAWSKO
POMORSKA
OKREGOWA
$1 Z B A$
INZYNIEROW
BUDOWNICTWA
OKREGOWA KOMISJA KWALIFIKACYJNA
Bydgoszcz, dnia 18 grudnia 2013 r.
Sygn. akt: KUPOIIB/KK-0054-0040/13
KUPOIIB/KK-0055-0081/13

DECYZJA

Na podstawie art. 24 ust. 1 pkt 2 ustawy z dnia 15 grudnia 2000 r. o samorządach zawodowych architektów, inżynierów budownictwa oraz urbanistów (Dz. U. z 2001 r. Nr 5, poz. 42, z późn. zm.), art. 13 ust. 1 pkt 1 i 2 i ust. 2 , art. 14 ust. 1 pkt 4 i ust. 3 pkt 1 i 3 ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz. U. z 2010 r. Nr 243, poz. 1623, z późn. zm.) oraz § 11 ust. 1 pkt 1 rozporzadzenia Ministra Transportu i Budownictwa z dnia 28 kwietnia 2006 r. W sprawie samodzielnych funkcji technicznych w budownictwie (Dz. U. z 2006 r . Nr 83, poz. 578, z późn. zm.) w zwiąku z at. 104 Kodeksu postępowania administracyjnego (Dz. U. z 2000 r. Nr 98, poz. 1071, z póżn. zm.), po ustaleniu, ze zostały spetnione warunki w zakresie przygotowania zawodowego oraz po złożeniu egzaminu na uprawnienia budowlane z wynikiem pozytywnym,

Pan Piotr Zbigniew Boczan
 magister inżynier o kierunku inżynieria środowiska ur. dnia 20 stycznia 1983 r. w Bydgoszczy
 otrzymuje
 UPRAWNIENIA BUDOWLANE numer ewidencyjny KUP/0145/PWOS/13

do projektowania i kierowania robotami budowlanymi bez ograniczeń
w specjalności instalacyjnej w zakresie sieci, instalacji i urządzeń
cieplnych, wentylacyjnych, gazowych, wodociagowych i kanalizacyjnych

UZASADNIENIE

W związku z uwzglednieniem w całości żadania strony, na podstawie art. 107 § 4 K.p.a. odstepuje się od uzasadnienia decyzji. Zakres nadanych uprawnień budowlanych wskazano na odwrocie decyżji.

Pouczenie

Od niniejszej decyzji służy odwołanie do Krajowej Komisji Kwalifikacyjnej Polskiej Izby Inżynierów Budownictwa w Warszawie, za pośrednictwem Okręgowej Komisji Kwalifikacyjnej KUPOIIB w Bydgoszczy w terminie 14 dni od dnia jej doręczenia.
Sklad Orzekajacy
Okręgowej Komisji Kwalifikacyjnej
Otrzymuja:

1. Pan Piotr Zbigniew Boczan
ul. Dworcowa 9/1
89-121 Slesin
2. Okregowa Rada lzby
3. Głowny Inspektor
Nadzoru Budowlanego

4. a / a

POLSKA
1 B A
1却ZYMEROW
BUOOWNICTWA

Zaświadczenie
 o numerze werytikacyjnym:

KUP-JPM-55M-ADY *

Pan Piotr Boczan o numerze ewidencyjnym KUP/IS/0019/14
adres zamieszkania ul. Dworcowa 9/1, 89-121 Ślesin
jest członkiem Kujawsko-Pomorskiej Okręgowej Izby Inżynierów Budownictwa i posiada wymagane ubezpieczenie od odpowiedzialności cywilnej.
Niniejsze zaświadczenie jest ważne do dnia 2016-09-30.

Zaświadczenie zostało wygenerowane elektronicznie i opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu w dniu 2016-03-08 roku przez:

Adam Podhorecki, Przewodniczący Rady Kujawsko-Pomorskiej Okręgowej Izby Inżynierów Budownictwa.
(Zgodnie art. 5 ust 2 ustawy z dnia 18 września 2001 r. o podpisie elektronicznym (Dz. U. 2001 Nr 130 poz. 1450) dane w postaci elektronicznej opatrzone bezplecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu sa równoważne pod względem skutków pràwnych dokumentom opatrzonym podpisami własnoręcznymi.)

[^5]

KUJAWSKO POMORSKA
OKREGOWA I Z B A INZYNIERÓW BUDOWNICTWA

Bydgoszcz, dnia 10 czerwca 2011 r.
Sygn. akt: KUPO\|B/KK-0054-0007/11

DECYZJA

Na podstawie art. 24 ust. 1 pkt 2 ustawy z dnia 15 grudnia 2000 r. o samorządach zawodowych architektów, inżynierów budownictwa oraz urbanistów (Dz. U. z 2001 r. Nr 5, poz. 42, z pózzn. zm.) , art. 13 ust. 1 pkt 1 i ust. 2, art. 14 ust. 1 pkt 5 i ust. 3 pkt 1 ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz. U. z 2010 r. Nr 243, poz. 1623, z późn) w zwiazzku z art. 5 ustawy z dnia 28 lipca 2005 r. o zmianie ustawy - Prawo budowiane oraz o zmianie niektórych innych ustaw (Dz. U z 2005 r. Nr 163, poz. 1364) oraz § 12 pkt 1 rozporządzenia Ministra Infrastruktury z dnia 18 maja 2005 r. w sprawie samodzielnych funkcji technicznych w budownictwle (Dz. U. Nr 96, poz. 817) w związku z art. 104 Kodeksu postępowania administracyjnego (Dz. U. z 2000 r. Nr 98, poz. 1071, z późn. zm.)

Okręgowa Komisja Kwalifikacyjna nadaje
Panu Leszkowi Januszowi Sobala magistrowi inżynierowi o kierunku elektrotechnika urodzonemu dnia 19 lipca 1968 r. w Szubinie

UPRAWNIENIA BUDOWLANE numer ewidencyjny KUP/0070/POOE/11
do projektowania bez ograniczeń w specjalności instalacyjnej w zakresie sieci, instalacji i urządzeń elektrycznych i elektroenergetycznych

UZASADNIENIE

W związku z uwzględnieniem w całosci żądania strony, na podstawie art. 107 § 4 K.p.a. odstępuje się od uzasadnienia decyzji. Zakres nadanych uprawnień budowlanych wskazano na odwrocie decyzji.

Pouczenie

Od niniejszej decyzji sluży odwołanie do Krajowej Komisji Kwalifikacyjnej Polskiej Izby Inżynierów Budownictwa w Warszawie, za pośrednictwem Okręgowej Komisji Kwalifikacyjnej KUPOllB w Bydgoszczy w terminie 14 dni od dnia jej doręczenia.

POLSKA
$1 Z B A$
INŻYNIEROW
BUDOWNICTWA
Bydgoszcz 2015-08-21
(miejscowość, data)

Zaświadczenie

Pan/Pani SOBALA LESZEK
miejsce zamieszkania
89-100 NAKLO N/NOTECIA
UL. KRASZEWSKIEGO 14A
jest członkiem Kujawsko-Pomorskiej
Okręgowej Izby Inżynierów Budownictwa
o numerze ewidencyjnym \qquad
KUP/IE/0303/07 I
i posiada wymagane ubezpieczenia od odpowiedzialności
cywilnej.
Niniejsze zaświadczenie jest ważne od dnia 2015-09-01
do dnia 2016-08-31

〔UJAWSKO POMORSKA OKREGOWA
TBA INŻYNIERÓW BUDOWNICTWA
w BYOGOSZCZY

- 0×0 BYDGOSZCZ, ut B. Ruminsktego ©
tel $523667050 \cdot \operatorname{tax} 523867059$

PRZEWODNICZAU r
Rady Okregowej lzby

Województwo:
Powiat:
Miejscowość:
Jednostka ewidencyjna:
Obręb:
wielkopolskie
pilski
M. $\angle O B Z ̇ E N I C A$

301904_4, ŁOBZ̈ENICA - MIASTO
Nr 0001, M. KOBŻENICA

Informacja z rejestru gruntów

Nr jednostki rejestrowej G. 655
KW PO1Z/00017522/8
whaccaci
GMINA LOBŻENICA Udział: 1/1
Siedz : 89-310 ŁOBZENICA, ul. SIKORSKIEGO 7

Arkusz mapy	Numer dzialki	Bližsze określenie polożenia	Opisy użytkow	Ozn. uż. ikont. klasyf.	Powierzchnia		Nr ksiegi wieczystej
					użytków wha	dzialki wha	
8	499	LOBZENICA	inne tereny zabudowane tereny rekreacyjno wypoczynkowe	B: Bz	0.6001 0.4001	1.0002	$\begin{gathered} P 012 / 00017 \\ 522 / 8 \end{gathered}$
			Razem:		1.0002	1.0002	

Slownie: jeden ha, dwa m. kw.
Sporządził(a) : Margorzata Papka dnia:09.02.2016
Stan danych na dzień : 09.02.2016

Tylko do użytku służbowego

RG-GP.6727.16.2016

Gmina Lobżenica
ul. Sikorskiego 7
89-310 Lobżenica

dotyczy: wypisu i wyrysu z miejscowego planu zagospodarowania przestrzennego miasta Lobżenicy

Na podstawie art. 30 ust. 1 ustawy z dnia 27 marca 2003 r. o planowaniu i zagospodarowaniu przestrzennym (Dz. U. z 2015 r. poz. 199), Burmistrz Łobżenicy przedstawia wypis i wyrys z miejscowego planu zagospodarowania przestrzennego Gminy Łobżenica - Uchwała Nr XXXVHI/360/2002 Rady Miejskiej w Łobżenicy z dnia 8 października 2002 roku, w sprawie zmiany miejscowego planu zagospodarowania przestrzennego Miasta Łobżenicy, opublikowana w Dzienniku Urzędowym Województwa Wielkopolskiego Nr 133 z dnia 31 października 2002 roku, dia następującej działki:

- działka 0 numerze ewidencyinym 499 (w zakresie, w jakim mieści się ona w granicach ww. planu) położona w obrębie M. Lobżenica, w zasięgu terenu oznaczonego w ww. planie, oznaczona jest jako tereny uslug publicznych (ozn. U1).

Załaczniki:

1. wyrys ww. planu-1 strona A4 - fragmenty rysunku planu,
2. wypis z ww. planu -6 stron $A 4$ - fragmenty tekstu planu. MIASTA LOBŻENICY
RYSUNEK NR 1 (skala 1:2000)

> | > OZNACZENIA: |
| :--- |
| > PRZEZNACZENIE TERENU |
| > $\begin{array}{cl}\text { U1 } & \text { - tereny usług publicznych } \\ > \text { M } & \text { - tereny zabudowy mieszkaniowej } \\ > \text { Mu } & \text { - tereny zabudowy mieszkaniowo-usługowej } \\ > \text { N } & \text { - tereny wyłaczone z zabudowy } \\ > \text { KD } & \text { - ulice dojazdowe }\end{array}$ > |

OZNACZENIA REDAKCYJNE:

- granica terenu objetego wnioskiem o wypis i wyrys

Zgodność niniejjszego wyrysu z tres̉ciq rysunku planu miejscowego potwierdzam

WYPIS Z MIEJSCOWEGO PLANU ZAGOSPODAROWANIA PRZESTRZENNEGO MIASTA LOBŻENICY

(...)

Rozdzial 1
Przepisy ogólne

(...)
§ 1. 1. Przedmiotem ustaleń niniejszej uchwaly jest obszar funkcjonalny miasta Łobżenicy.
2. Obszar funkcjonalny miasta Łobżenicy obejmuje, w czę́ciach, obszary administracyjne: miasta Łobżenicy, sołectwa Luchowo i sołectwa Rataje.
3. Granice obszaru objętego uchwała oznaczono na rysunku zmiany planu w skali 1:2.000 stanowiącym załacznik do uchwały, zwanym dalej rysurkiem.
(...)
2. Granice obszarów chronionego krajobrazu oznaczono graficznie na rysunku.
(...)
§ 8. 1. Ze względu na ochronę środowiska kulturowego ustala się zakaz:

1) lokalizowania obiektów nie związanych z funkcją sanktuarium w Górce Klasztornej, na obszarze strefy ochrony krajobrazu, o której mowa w $\S 6 \mathrm{pkt} 5$,
2) lokalizowania jakichkolwiek obiektów, w tym związanych z gospodarka rolną, rórwnież tuncli foliowych itp. form przestrzennych w strefach ekspozycji, o, których mowa w §6 pkt 6 i 7 oraz dolin, o których mowa w §6 pkt 2 i 3 ,
3) lokalizowania obiektów produkcyjnych na obszarze podstawowej struktury miasta, z wyłączenjem niezbędnych technologicznie obiektów i urządzeń związanych z funkcjonowaniem zakładów istniejących w dniu wejścia w życie niniejszej uchwały.
2. Ze względu na ochronę środowiska przyrodniczego ustala się zakaz:
1) zabudowy terenów rolnych, wyznaczonych jako obszary rolniczej przestrzeni produkcyjnej,
2) trwałego naruszania walorów krajobrazowych, w tym rzeźby terenu, w szczególności zboczy dolin,
3) dokonywania zmian stosunków wodnych, jezzeli nie służ̨ ochronie przyrody,
4) likwidowania zadrzewień, z wyłączeniem przypadków, które uniemożliwiają przeprowadzenie infrastruktury technicznej lub rozwiązanie układu komunikacyjnego, zgodnie z niniejszą uchwałą,
5) emisji zanieczyszczających powietrze i uciażliwych dla otoczenia bez względu na graniczne standardy emisyjne,
6) lokalizacji inwestycji mogacych znacząco oddziaływać na środowisko, ustalanych zgodnie z przepisami ochrony środowiska.
3. Na całym obszarze objętym planem ustala się zakaz budowy obiektów handlowych o powierzchni sprzedażowej powyżej 1.000 m 2 .

Rozdzial 3

Tereny przeznaczone pod zabudowe

§ 9. Na obszarze objętym planem ustala się prawo do zabudowy terenów o następującym przeznaczeniu:

1) tereny zabudowy mieszkaniowej, oznaczenie na rysunku - M,
2) tereny zabudowy mieszkaniowo-usługowej, oznaczenie na rysunku - Mu,

- (...)

4) tereny zabudowy związanej z działalnością usługowa, oznaczenie na rysunku - U,

- 10) tereny urządzeń i obstugi infrastruktury technicznej, oznaczone na rysunku:
a) WW - tereny urzadzeń zaopatrzenia w wode,
b) EG - tereny urzadzeń zaopatrzenia w gaz,
c) EE - tereny urzadzeí zasilania elektro-energetycznego,
d) NO - tereny odbioru ścieków komunalnych,

e) T-bazy służące obsłudze infrastruktury technicznej.

(...)
§ 10.
(...)
5. Tereny zabudowy usługowej (U), o których mowa w §9 pkt 4, stanowią tereny zabudowane lub przeznaczone do zagospodarowania budynkami użyteczności publicznej, obejmujące usługi publiczne, administracje
i usługi komercyjne, z wylączeniem budynków mieszkalnych.
Wyznaczone tereny usługowe oznaczono:

1) U1 - tereny usług publicznych,
2) U2 - tereny usług handlu.
3) U3-pozostałe ushugi komercyjne.
(...)
§ 13. 1. Istniejace obiekty użteczności publicznej moga zmieniać przeznaczenie na inne cele usługowe lub mieszkaniowe, o ile zostana spełnione warunki techniczne jakim powinny odpowiadać budynki i ich usytuowanie.
2. Tereny usług publicznych z zielenią towarzysząca, np. szkoły i przedszkola, mogą petnić funkcje ogólnodostępne w zakresie sportu i rekreacji oraz upowszechnienia kultury.

Rozdzial 4

Obszary wylączone x zabudowy

§ 14. 1. Obszarami wyłaczonymi z zabudowy są:
(...)
5) tereny zieleni izolacyjnej ustalone w planie, oznaczone na rysunku - Z,
(...)
§15.1. Na terenach wyłaczonych z zabudowy. o których mowa w $\S 14$ ust. 2, dopuszcza się realizację następuiących obiektów budowlanych:

1) dróg slużących obsłudze terenu,
2) sieci uzbrojenia terenu,
3) urządzeń melioracji wodnych.
(...)
4. Tereny zieleni, o których mowa w $\S 14$ ust. 1 pkt 5, są wyłączone z zabudowy w całości, ze wskazaniem dla tworzenia systemu miejskiej zieleni wysokiej.
(...)

Rozdzial 5

Zasady konserwatorskiej ochrony zabytków

§17.1. Na obszarze objętym planem ochrona srodowiska kulturowego dotyczy obiektów oraz obszarów zabytkowych.
2. Ochrona konserwatorska zabytków obejmuje:

1) budynki wpisane do rejestru zabytków,
2) budynki ujęte w ewidencji dóbr kultury,
3) układ i rozplanowanie ulic miasta Łobżenicy wraz z. Wyznaczonymi liniami regulacyjnymi historycznej zabudowy,
(...)
3. Budynki wpisane do rejestru oraz ujęte w ewidencji dóbr kultury, granice obszarów wpisanych do rejestru i stanowiska archeologiczne oznaczono graficznie na rysunku.
§18. 1. Decyzje o warunkach zabudowy i zagospodarowania terenu w odniesieniu do obszaru zespołu klasztornego, zespołu dworsko-folwarcznego w Ratajach, układu i rozplanowania ulic miasta Lobżenicy na
obszarze wpisanym do rejestru, budynków ujetych w rejestrze i ewidencji dóbr kultury wydaje się po uzgodnieniu z Wojewódzkim Konserwatorem Zabytków.
4. Wszelkie prace i roboty przy zabytkach oraz prace archeologiczne i wykopaliskowe wolno prowadzić tylko za zezwoleniem Wojewódzkiego Konserwatora Zabytków.
5. Odbudowa, przebudowa oraz remont obiektu wpisanego do rejestru zabytków wymaga, przed wydaniem decyzji o pozwoleniu na budowę, uzyskania zezwolenia Wojewódzkiego Konserwatora Zabytków.
6. Rozbiórka obiektu budowlanego wpisanego do rejestru zabytków wymaga zezwolenia Wojewódzkiego Konserwatora Zabytków.
7. Prowadzenie prac ziemnych na obszarach wpisanych do rejestru zabytków oraz na oznaczonych na rysumku stanowiskach archeologicznych wymaga zgłoszenia do Wojewódzkjego Konserwatora Zabytków.
(...)
§ 19. Nie ustala się konserwatorskiej ochrony obiektów na podstawie niniejszej uchwały.
§ 20.1. Dla ochrony zasobów kulturowych, na obszarze objętym planem, ustala się strefy ochrony krajobrazu kulturowego, o których mowa w rozdz. 2.

Rozdzial 6

Zasady funkcjonowania infrastruktury technicznej

§ 21. 1. W zakresie infrastruktury technicznej ustala się:

1) zaopatrzenie w wodę z istniejacego miejskiego systemu wodociągowego,
2) zasilanie w energię elektryczną z istniejącego systemu elektroenergetycznego,
3) zaopatrzenie w gaz z istniejącego systemu miejskiego,
4) odprovadzenie ścieków komunalnych systemem grawitacyjno-pompowyın do mechaniczno-biologicznej oczyszczalni ścieków w Liszkowie,
5) odprowadzenie wód opadowych systemem kanalów deszezowych wyposażonych, przed wylotami do odbiorników, w osadniki piasku i blota z separatorami substancji ropopochodnych,
6) usuwanie odpadów - komunalnym systemem, z wywozem na gminne wysypisko odpadów stałych w Luchowie, a docelowo na projektowane wysypisko w Witrogoszczy lub poprzez innego odbiorcę odpadów, 7. zachowaniem przepisów szczególnych o odpadach io ochronie środowiska, w tym przepisów dotyczacych odpadów niebezpiecznych,
7) awaryjne zaopatrzenie ludności w wodę pitną ze studni określonych w programie publicznych urzadzeń zaopatrzenia w wodę w warunkach specjalnych,
8) zaopatrzenie w cieplo, z lokalnych systemów grzewczych, z zakazem stosowania paliw i urządzeń do ich spalania nie spełniających wymogów ochrony środowiska.
2. Zaopatrzenie w wodę, o którym mowa w ust. 1 pkt 1, obejmuje wszystkich odbiorców na terenie objętym planem.
3. Zasilanie w energię elektryczna, o którym mowa w ust. I pkt 2, zapewniają istniejące linie SN 15 KV , stacje transformatorowe $15 / 04 \mathrm{KV}$ oraz sieci niskiego napięcia następująco:
1) dla terenów zagospodarowanych $-z$ sieci istniejacych,
2) dla terenów przewidzianych do zagospodarowania - z sieci projektowanych, z prawem budowy stacji transformatorowych służących obsłudze wyznaczonych terenów.

- 4. Zaopatrzenie w gaz, o którym mowa w ust. 1 pkt 3, zapewniaja gazociagi wysokiego i średniego ciśnienia, stacje redukcyjno-pomiarowe I° i $I I^{\circ}$ oraz sieci niskiego ciśnienia, zgodnie z programem gazyfikacji.

5. Odprowadzenie ścieków komunalnych, o których mowa w ust. 1 pkt 4, obejmuje:

- 1) podzienne uzbrojenie w sieć kanalizacji zbiorowej.

2) przepompownie ścieków komunalnych,
3) rurociag thoczny wyprowadzony do oczyszczalni w Liszkowie,
4) punkt zlewny ścieków bytowych w Łobżenicy.
6. Do czasu zrealizowania zbiorowego odprowadzenia ścieków komunalnych dla całego obszaru objętego planem, ustala się odbiór ścieków do szczelnych zbiorników bezodplywowych, z wywozem do punktu zlewnego w Łobżenicy.
7. Odprowadzenie wód opadowych, o którym mowa w ust. 1 pkt 5. obejmuje etapowe:
1) eliminowanie kanalizacji ogólnospławnej,
2) budowę urządzeń do oczyszczania.
8. Dla terenów zabudowy nie objętej miejskim systemem usuwania scieków opadowych ustala sie powierzchniowe odprowadzenie wód deszczowych, z wykorzystaniem retencji gruntowej.

Rozdzial 7

Uklad komunikacyjny miasta

§ 22. 1. Układ komunikacyjny miasta tworzą ulice istniejace i projektowane obejmujace:

1) podstawowy układ komunikacyjny, który stanowią:
a) ulice główne,
b) ulice zbiorcze,
2) obsługujący układ komunikacyjny, który stanowią:
a) ulice lokalne,
b) ulice dojazdowe,
3) samodzielne ciągi piesze,
4) samodzielne ścieżki rowerowe,
5) pozostate ulice dojazdowe, stanowiace dojazdy gospodarcze oraz parkingi publiczne.
2. Elementy układu komunikacyjnego miasta, o którym mowa w ust. 1, oznaczono następującymi symbolami literowymi:
1) " KG " - ulice głóvwne,
2) "KZ" - ulice zbiorcze,
3) "KL" - ulice lokalne,
4) "KD" - ulice dojazdowe,
5) samodzielne ciagi piesze:
a) "KXX" - glówne przejścia piesze,
b) "KX" - pozostałe przejścia piesze,
6) "KP" - parkingi publiczne.
3. Dojazdy gospodarcze, o których mowa w ust. 1 pkt 5, stanowią, zgodnie z ewidencją gruntów, drogi polne wyodrębnione na rysunku bez dodatkowych oznaczeń.
4. Samodzielne ścieżki rowerowe oraz ścieżki rowerowe w liniach rozgraniczajaçchch ulic lub ciagów pieszych oznaczono graficznie na rysunku.
5. Zachowuje się przebieg waskotorowej linii kolejowej Kruszki - Łobżenica, oznaczony na rysunku - KK.
§ 23. 1. Ulice główne (KG) stanowią następujace drogi:
1) droga wojewódzka Nr 242 z projektowanym obejściem miasta,
2) istniejacy przebieg drogi wojewódzkiej oraz drogi powiatowej Nr 29332 obejmujacy ul. Wyrzyską, PI. Wolności, Ulice: Powstańców Wlkp., Sportową, Sikorskiego, Złotowską.
2. Dla istniejacego układu ulic głównych zachowuje się;
1) ewidencyjne linie rozgraniczajace,
2) istniejace zjazdy, o ile nie jest możliwy dojazd do nieruchomości z ulicy o niższej klasie technicznej.
3. W pasie drogowym ulic głównych, z wyłączeniem przebiegu w zabudowie historycznej, ustala się zakaz
lokalizowania infrastruktury technicznej nie związanej z droga.

- 4. Ustalenia ust. 3 nie dotyczą przepustów poprzecznych.

5. Dla projektowanego obejścia, oznaczonego na rysunku KG-1, ustala się:
1) szerokość pasa drogowego $-25,0 \mathrm{~m}$,
2) jedną jezdnię z dwoma pasami ruchu,

Zgodność niniejszego wypisu z treścia planu miejscowego potwierdzam

3) skrzyżowania z ulicami: Targową, Polną-Wyrzyską i Sportowa
4) parametry techniczne zgodne z warunkami technicznymi jakim powinny odpowiadać drogi publiczne i ich usytuowanje.
5) przebieg drogi przez dolinę Łobżonki - na estakadzie, umozliwiajacy przewietrzanie doliny, zachowanie walorów krajobrazowych oraz istniejacych dojazdów do terenów rolnych i wsi Kościerzyn Mały,
6) zakaz lokalizowania w pasie drogowym, z wyłączeniem przepustów poprzecznych, infrastruktury technicznej nie związanej z droga.
6. Dopuszcza się przebieg obejścia miasta poza obszarem zainwestowania, zgodnie z oznaczeniem na rysunku, które stanowi nieprzekraczalną północno-zachodnią linię rozgraniczajacą pasa drogowego.
7. Realizacja przebiegu obejścia zgodnie z ustaleniami ust. 4 wymaga uzyskania zgód na zmianę sposobu użytkowania gruntów rolnych na cele nierolnicze oraz sporządzenia zmiany niniejszej uchwaly.
8. Do czasu realizacji obejścia miasta, droga Nr 242, wg obecnego przebiegu, spełnia funkcję drogi głównej.
§ 24. I. Ulice zbiorcze (KZ) stanowią następujace drogi publiczne:
1) drogi powiatowe:
a) Nr 29357 - ul. Ks, Raczkowskiego,
b) Nr 29361 - ul. Mickiewicza,
c) Nr 29367 i częsé drogi Nr 242 - przebieg drogi z Liszkowa i ul. Sportowa do skrzyżowania z droga główną, z zastrzeżeniem § 23 ust. 6,
2) droga gminna z Kruszek do skrzyżowania z ul. Targową i drogą Nr 242.
2. Dla ulic zbiorczych zachowuje siẹ ewidencyjne linie rozgraniczające ze zmianą rozgraniczenia skrzyżowań oraz poszerzenia w części rozgraniczeń ulic: Ks. Raczkowskiego i ul. A. Mickiewicza, zgodnie z rysunkiem.
3. Dla ulic, o których mowa w ust. 1, ustala się jedną jezdnię z dwoma pasami ruchu i parametry techniczne zgodne z warunkami technicznymi jakim powinny odpowiadać drogi publiczne i ich usytuowanie.
(...)
§26. I. Ulice dojazdowe (KD) stanowią pozostate, nie wymienione w $\S 23,24$ i 25 ulice, dla których zachowuje się linie rozgraniczające, chyba że z rysunku wynika inaczej.
4. Projektowane ulice dojazdowe, obsługujace zespoły mieszkaniowe rozgraniczono graficznie na rysunku.
§27. Wydzielone parkingi ogólnodostępne oznaczone na rysunku - KP, moga stanowić parkingi strzeżone z ogrodzeniem i I kondygnacyjnym obiektem obsługi.
(...)
§29.1. Na wszystkich ulicach głównych i zbiorczych, a w wypadkach uzasadnionych względami funkcjonalnej obsługi terenu, również na drogach lokalnych mogą być prowadzone linie komunikacji autobusowej, z prawem realizacji zatok przystankowych oraz budowy wiat osłonowych.
5. Na przebiegu wszystkich ulic, z wyłączeniem obejścia miasta, dopuszcza się realizację ścieżek rowerowych, o ile rozwiązania techniczne drogi umożliwiają umieszczenie odrębnego ciagu rowerowego w wyznaczonym pasie drogowym.
6. W obszarze historycznego ukladu urbanistycznego objętego ścistą ochroną konserwatorską nie dopuszcza się zmiany linii rozgraniczających ulic oraz ich parametrów technicznych.
7. Dla obszaru historycznego obsługa terenów przyległych zapewniona bedzie poprzez ulice jednokierunkowe, zgodnie z organizacją ruchu dla całego Starego i Nowego Miasta, z dopuszezeniem ulic pieszojezdnych.

Rozdzial 8

Warunki zabudowy i zagospodarowania terenów

§30.1. Na wszystkich terenach, przeznaczonych pod zabudowę, budynki muszą byé lokalizowane z zachowaniem następujacych zasad:

1) forma i gabaryty, w szczególności wysokość, muszą nawiązywać do zabudowy sąsiedniej,
2) o ile na działce sąsiedniej nie istnieja budynki usytuowane na granicy, ustala się zakaz sytuowania budynków przy granicy,
3) warunek ustalony w pkt 2 nie ma zastosowania przy realizacji, na terenach zabudowy mieszkaniowej, bliżniaczego budynku gospodarczego na dwóch sąsiednich działkach, na podstawie jednego pozwolenia na budowe,
4) o ile na dzialce istnieje większa liczba budynków niż ustalona w niniejszej uchwale, ustala się zakaz lokalizowania nowych budynkỏw, zabudowa może być realizowana poprzez rozbudowe obiektów istniejaçch, z zachowaniem postanowień niniejszej uchwały oraz warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie.
2. Na całym obszarze objetym planem zachowuje się istniejące budynki, z prawem do ich rozbudowy lub przebudowy, z zachowaniem warunków wynikających z art. 4 Prawa budowlanego, warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie oraz postanowien niniejszej uchwały.
3. O ile na rysunku planu nie ustalono linii zabudowy, linie zabudowy wzdłuż dróg ustala się z zachowaniem minimalnych odleglości określonych w ustawie z dnia 21 marca 1985 r. o drogach publicznych.
4. Wszystkie tereny, które pełnią funkcje usługowe, winny zapewniać miejsca postojowe dla użytkowników w ilosci wynikającej z przeznaczenia obiektów.
(...)
§34. 1. Na terenach usług, z wyłączeniem usług sakralnych, moga być realizowane obiekty związane z działalnością usługową, w formie architektonicznej spójnej z otoczeniem i wysokości nie wyższej niż najwyższy sasiedni budynek.
(...)
§37.1. Na terenach urządzeń i obsługi infrastruktury technicznej dopuszcza się realizacje wszystkich obiektów związanych technologicznie z funkcją terenu oraz prawo do zmiany użytkowania historycznej wieży ciśnień na inne cele, w szczególności usługowe.
5. Na terenach użytków rolnych. wyłaczonych z zabudowy dopuszcza się lokalizację ; obiektów związanych z realizowanym uzbrojeniem technicznym miasta, nie będących budynkami, a służących obsłudze terenów przeznaczonych do zabudowy.

Roxdzial 9
 Zasady podzialu na dzialki budowlane

§ 40. Na terenach zabudowy istnicjacej zachowuje się podziaty na działki gruntu, zgodnie z ewidencja gruntów.
§41. Na terenach, na których oznaczono linie podziału na dziakki budowlane, ustaleniem obowiązującym jest ilość dziatek oraz następująca ich szerokość:

1) dla budynków wolno stọących - nie mniejsza niż $21,00 \mathrm{~m}$,
2) dla budynków bliźniaczych - nie mniejsza niż $17,00 \mathrm{~m}$,
3) dla zabudowy szeregowej - $12,0 \mathrm{~m}$ dla segmentów środkowych i $15,0 \mathrm{~m}$ dla segmentów skrajnych.
§ 42. 1. Dla terenów rolnych (R) z dopuszczoną zabudowa, wydzielona działka siedliskowa nie może być mniejsza niż $1.500 \mathrm{~m}^{2}$, a zabudowa musi spełniać warunki obsługi indywidualnego gospodarstwa rolnego.
2. Na terenach zabudowy związanej z działalnością usługowo-mieszkaniową (Um) i usługowo-produkcyjna

- (Up) wydzielone działki budowlane muszą posiadać szerokość nie mniejszą niz $35,0 \mathrm{~m}$ oraz wielkość gwarantujaca prawidłowe funkcjonowanie i zagospodarowanie terenu.
- 3. Dla wydzielonych działek siedliskowych i budowlanych, 0 których mowa w ust. 1 i 2 , oraz dziakek
- dla projektowanych stacji transformatorowych, mają zastosowanie przepisy art. 93 ustawy z dnia 21 sierpnia 1997 r . o gospodarce nieruchomościami, a jedna z granic działki siedliskowej (R) lub budowlanej (Úm, Up) musi stanowić rozgraniczenie drogi ustalonej w niniejszej uchwale.

Rozdzial 10

Przepisy końcowe

§43. Na podstawie art. 10 ust. 3 ustawy z dnia 7 lipca 1994 r. o zagospodarowaniu przestrzennym, dla terenów przeznaczonych do zagospodarowania ustala się następujące stawki procentowe słuzace naliczeniu opłaty z tytułu wzrostu wartości nieruchomości:

1) tereny mieszkaniowe - 10%,
2) tereny mieszkaniowo-uslugowe i uslugowe - 20\%,
3) tereny usługowo-produkcyjne - 20%.
(...)
§ 45. Na obszarze objętym niniejsza uchwała:
4) traci moc uchwała nr X/41/89 Rady Narodowej Miasta i Gminy w Lobżenicy z dnia 19 grudnia 1989 r. w sprawie miejscowego planu ogólnego zagospodarowania miasta Lobżenicy,
(...)

III. PROJEKT ZAGOSPODAROWANIE TERENU

III. PROJEKT ZAGOSPODAROWANIA TERENU.

1. Opis techniczny.

1.1. Podstawa opracowania.

1. mapa sytuacyjno - wysokościowa w skali 1:500
2. wizja lokalna w terenie,
3. inwentaryzacja istniejącego budynku,
4. uzgodnienia z inwestorem przekazane drogą elektroniczną i pocztową,
5. protokół ze spotkania z dn. 01.03.2016r. znak RG-IZP.7012.1.2016
6. audyt energetyczny wykonany przez Energo Expert Mariusz Woznak, styczeń 2016
7. audyt oświetlenia budynku wykonany przez Energo Expert Mariusz Woznak, styczeń 2016,
8. opinia ornitologiczna i chiropterologiczna wykonana przez Firmę Milvus - Szymon Wójcik, luty 2016r.

1.2. Przedmiot i cel opracowania.

Przedmiotem inwestycji jest termomodernizacja oraz przebudowa budynku Przedszkola Publicznego wraz z robotami budowlanymi towarzyszącymi na działce nr 499 w Łobżenicy. Zakres opracowania obejmuje wykonanie robót budowlanych polegających na dociepleniu ścian i dachu budynku, wykonaniu nowych zadaszeń nad wejsciami, oraz wykonanie innych prac remontowo-budowlanych w budynku Przedszkola Publicznego w Lobżenicy.

1.3. Opis istniejącego zagospodarowania terenu.

Działka nr 499 jest zagospodarowana przedmiotowym budynkiem oraz niezbędną infrastrukturạ techniczną. Ponadto na działce znajdują się tereny zielone, nieutwardzone. Cała działka jest ogrodzona.

1.4. Opis projektowanego zagospodarowania terenu.

Projektuje się termomodernizacje i przebudowę budynku Przedszkola Publicznego w Łobżenicy na dz. nr 499.
W wyniku realizacji projektowanego zamierzenia inwestycyjnego, z uwagi na planowane docieplenie scian zewnętrznych, zmienione zostaną gabaryty budynku użyteczności publicznej. Projektuje się również wyburzenie istniejących tarasów i budowę nowych schodów z zadaszeniami do sal zajęć.

1.4.1. Obszar oddziaływania inwestycji.

Ze względu na usytuowanie obiektu i po przeanalizowaniu jego wpływu na sąsiednie nieruchomości, w oparciu o Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r., w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. Nr 75, poz. 690 z późn. zmianami) §12, §13, §60, §271-273 i dział VI - bezpieczeństwo pożarowe stwierdzam, że obszar oddziaływania obiektu obejmuje działki nr 499 stanowiące własność inwestora. Obszar oddziaływania zamyka się w granicach działki inwestora.
Do opracowania dołạczono mapę sytuacyjno - wysokościową w skali 1: 500 z zaznaczeniem obiektu budowlanego, który jest objęty opracowaniem.

1.4.2. Przystosowanie obiektu i terenu dla osób niepełnosprawnych.

Dostęp do budynku dla osób niepełnosprawnych na warunkach istniejących. Od północnej strony znajduje się istniejąca pochylnia dla wózków. Na parterze budynku nie znajdują się dodatkowe progi, który utrudniałyby poruszanie dla osób niepelnosprawnych.

Dane techniczne budynku:

- powierzchnia zabudowy	-	$1277 \mathrm{~m}^{2}$
- kubatura	-	$\approx 6040 \mathrm{~m}^{3}$

- wysokość budynku(góra attyki)

-	$9,00 \mathrm{~m}$
-	$77,39 \mathrm{~m}$
-	$28,00 \mathrm{~m}(12,40 \mathrm{~m})$
-	2

1.5. Infrastruktura techniczna i komunikacyjna.

1.5.1 Zaopatrzenie w wodę.

Zaopatrzenie w wodę na zasadach dotychczasowych - bez zmian.

1.5.2 Zaopatrzenie w energię.

Zaopatrzenie w energię elektryczną na zasadach dotychczasowych - bez zmian.

1.5.3 Zaopatrzenie w gaz.

Na zasadach dotychczasowych.

1.5.4 Odprowadzenie wód deszczowych i roztopowych.

Odprowadzenie wód deszczowych i roztopowych - bez zmian.

1.5.5 Odprowadzenie ścieków.

Odprowadzenie ścieków do istniejącej kanalizacji - na zasadach dotychczasowych.

1.5.6 Gromadzenie odpadów stałych.

Czasowe gromadzenie odpadów stałych w zamkniętych przenośnych pojemnikach. - bez zmian.

1.5.7 Obsługa komunikacyjna.

Obsługa komunikacyjna na dotychczasowych warunkach.

1.6. Uwagi końcowe

Dla planowanego przedsięwzięcia wymagane jest sporządzenie przez kierownika budowy planu „bezpieczeństwa i ochrony zdrowia" (w skrócie BIOZ) wykonanego zgodnie z rozporządzeniem ministra infrastruktury z dnia 23 czerwca 2003 r . : „w sprawie informacji dotyczacej bezpieczeństwa i ochrony zdrowia oraz planu bezpieczeństwa i ochrony zdrowia" Dz. U. Nr 120 poz. 1126 z dnia 10 lipca 2003 r., a także przeszkolenie pracowników w powyższym zakresie.

Wszystkie prace budowlane należy prowadzić zgodnie z zatwierdzonym projektem budowlanym, sztuką budowlaną i obowiqzzującymi normami, przepisami BHP pod nadzorem osoby posiadajacej odpowiednie uprawnienia budowlane.

IV. EKSPERTYZA TECHNICZNA

EKSPERTYZA TECHNICZNA

1. Cel i zakres ekspertyzy

Przedmiotem inwestycji jest termomodernizacja oraz przebudowa budynku Przedszkola Publicznego w Łobżenicy wraz z robotami budowlanymi towarzyszącymi na działce nr 499, ul. Batorego 5, Łobżenica.

Zakres opracowania obejmuje wykonanie robót budowlanych polegających na dociepleniu ścian i dachu, wymianie stolarki okiennej w piwnicy, wymianie drzwi od pom. magazyn odpadów, wyburzenie tarasów i schodów zewnętrznych, oraz wykonanie nowych schodów przy wejściach do budynku, wykonanie nowych zadaszeń nad wejściami oraz inne prace remontowo-budowlane w budynku Przedszkola Publicznego w Łobżenicy. W ramach inwestycji projektuje się również instalacje poprawiające energooszczędność m.in. instalacje fotowoltaiczną.

Celem ekspertyzy technicznei iest ocena możliwości wykonania robót budowlanych zwiazanych z termomodernizacia budynku i dostosowaniem do nowych wymagań energooszczednych. Ponadto konieczne iest sprawdzenie wytrzymałości stropodachu, który ma zostać dodatkowo obciażony panelami fotowoltaicznymi.

2. Podstawa opracowania i cel opracowania

Ekspertyzę wykonano na zlecenie inwestora, na podstawie oględzin i inwentaryzacji budynku - dokonanych w lutym 2016 roku, w oparciu o informacje uzyskane od inwestora, projekt archiwalny budynku.
Konieczność wykonania ekspertyzy podyktowana została warunkami określonymi w Rozporządzeniu Ministra Infrastruktury - w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie §206 pkt 2.
Zamiarem inwestora jest dostosowanie budynku do standardów energooszczędnych. (szczegółowy opis w dalszej części projektu).

3. Opis ogólny budynku

Budynek będący przedmiotem niniejszego opracowania powstał w latach osiemdziesiatych. Budynek Przedszkola jest budynkiem składającym się z trzech segmentów (A, B i E).

Segment A jest budynkiem parterowym, podpiwniczonym o dachu płaski, od strony frontowej zakończony attyka. W tej części znajdują się pomieszczenia kuchni wraz z niezbędnymi pomieszczeniami towarzyszącymi (obieralnia, magazyn odpadków, produktów spoż.) oraz pomieszczenia socjalne pracowników kuchni. W piwnicy znajdują się pomieszczenia gospodarcze.

Segment B jest budynkiem dwukondygnacyjnym, niepodpiwniczonym o dachu plaskim. W segmencie tym znajdują się sale zajęć wraz z pom. socjalnymi (toalety, umywalnie, ciągi komunikacyjne).

Segment E jest budynkiem parterowym, niepodpiwniczonym o dachu płaskim. Do bocznej ściany dobudowane zostały 3 tarasy. W tej części znajdują się sale zajęć dla dzieci uczęszczających do żłobka.

Konstrukcja budynku w technologii tradycyjnej murowanej dach płaski o nachyleniu połaci około 5%. Założono układ ściany jako dwuwarstwowy tj. tynk zewnętrzny, ściana osłonowa, warstwa nośna, tynk wewnętrzny. Grubość ok. 50 cm .
Stropy stanowią płyty prefabrykowane kanałowe. Stropodach wentylowany o konstrukcji z płyt korytkowych. Budynek jest podłączony do sieci wodociągowej, energetycznej i kanalizacji.

Dane techniczne budynku:

- powierzchnia zabudowy

-	$1277 \mathrm{~m}^{2}$
-	$\approx 6040 \mathrm{~m}^{3}$
-	$9,00 \mathrm{~m}$
-	$77,39 \mathrm{~m}$
$-28,00 \mathrm{~m}(12,40 \mathrm{~m})$	
-	2

4. Ocena techniczna budynku

Na podstawie makroskopowych oględzin, konstrukcję budynku ocenia się jako dobrą/średnią. Zauważono pojedyńcze pęknięcia, brak rys oraz nie są widoczne ugięcia. Stan tynku zewnętrznego ocenia się jako średni, lokalnie występują znaczne ubytki i pęknięcia. Zauważono, że niektóre ze schodów zewnętrznych są w złym stanie technicznym.

4. Ocena techniczna budynku

Dokonano analizy nośności konstrukcji stropodachu w części przeznaczonej pod panele fotowoltaiczne oraz stropu, który zostanie dociążony warstwą wełny mineralnej granulowanej (obliczenia w załączniku).

Przeprowadzone obliczenia wykazały, że dodatkowe obciążenie od projektowanej izolacji termicznej granulatem z wetny mineralnej oraz od projektowanej instalacji fotowoltaicznej nie spowoduje przekroczenia nośności płyt. Przyjęto ciężar systemu paneli $42 \mathrm{~kg} / \mathrm{m} 2$. (Szczegółowe zestawienie obciążeń załączono do obliczeń).

Z uwagi na brak możliwości jednoznacznego określenia dokładnych parametrów istniejących płyt kanałowych zaprojektowaną podkonstrukcję stalową z profili RK120x120x5,6, która ma częściowo odciążać istniejący strop.

5. Ocena Elementów wykoriczeniowych.

Pokrycie dachu papa w dobrym stanie technicznym. Nie zauważono spękań.
Tynki zewnętrzne gruboziarniste w średnim stanie, lokalnie występują znaczne ubytki i pęknięcia. Stolarka okienna i drzwiowa PCV w dobrym stanie.

Utwardzenie wokół budynku częściowo betonowe, w części kostka betonowa. Ogólny stan techniczny elementów wykończeniowych należy ocenić jako średni.

Budynek przeznaczony do generalnej termomodernizacji z wykonaniem nowych warstw ściennych oraz dociepleniem stropodachu, do wymiany stolarka okienna piwnicy i zestawów balkonowych od sal zajęć źłobka oraz drzwi zewnętrzne od piwnicy i pom. magazynowania odpadków.
Wymienić należy również wszystkie obróbki blacharskie i systemy odwodnienia. Projekt zakłada również wyburzenie schodów zewnętrznych i wybudowanie nowych schodów oblożonych betonem płukanym.

6. Ocena spełnienia warunków technicznych istniejącego budynku

Obecnie budynek spelnia podstawowe zasady, wymagane przez aktualnie obowiązujące przepisy i rozporządzenia techniczno - budowlane.

Budynek nie spełnia jedynie wymagań co do aktualnych przepisów dotyczących izolacyjności przegród.

Projektowana termomodernizacja ma za zadanie dostosować do wymagań energooszczędnych.

7. Whioski i zalecenia.

Istniejący budynek "Przedszkola Publicznego w Łobżenicy" znajduje się w stanie odpowiednim, istnieje możliwość termomodernizacji w celu dostosowania się do przepisów dbających o energooszczędność wynikających z postanowień Unii Europejskiej.

Istnieje możliwość wystąpienia worków śnieżnych na dachu spowodowanych montażem paneli fotowoltaicznych. Konstrukcja stropu przeniesie dodatkowe obciążenia. Należy jednak pamiętać, że zgodnie z art. 61 pkt 2 ustawy prawo budowlane, właściciel lub zarządca obiektu budowlanego jest obowiązany zapewnić, dochowując należytej staranności, bezpieczne użytkowanie obiektu w razie wystąpienia (m.in) intensywnych opadów atmosferycznych. W przypadku wystapienia opadów śniequ zaleca sie bezwzglednie usuniecie śniegu \mathbf{z} polaci dachu.

Opracował:

Załączniki:

1. Dokumentacja fotograficzna.
2. Rysunki inwentaryzacyjne.

Dokumentacja fotograficzna.

Fot. 1 Elewacja frontowa

Fot. 2 Elewacja boczna I

Fot. 3 Elewacja

Fot. 4 Elewacja boczna II

V. OPIS TECHNICZNY

IV. PROJEKT ARCHITEKTONICZNO - BUDOWLANY.

1. Dane ogólne.

Opis techniczny został sporządzony według Rozporządzenia Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 25 kwietnia 2012 r. w sprawie szczegółowego zakresu i formy projektu budowlanego i zawiera opis projektu według kolejności określonej w rozporządzaniu.

1.1. Przedmiot i zakres opracowania.

Przedmiotem inwestycji jest termomodernizacja i przebudowa budynku Przedszkola Publicznego w Łobżenicy wraz z robotami budowlanymi towarzyszącymi na działce nr 499 w Łobżenicy. Zakres opracowania obejmuje:

- wszelkie roboty przygotowawcze tj. m. in.:
* demontaż wszelkich wymienianych elementów,
* demontaż schodów zewnętrznych oraz tarasów,
* demontaż instalacji odgromowej,
* przygotowanie ścian itd.
- wykonanie ocieplenia ścian poprzez przyklejenie płyt styropianowych EPS 80-036 gr. 16 cm metodą lekko mokrą
- wykonanie ocieplenia ścian fundamentowych w części podpiwniczonej styrodurem XPS gr. 7 cm ,
- wykonanie ocieplenia dachu wełną mineralną granulowaną metodą wdmuchiwaną -min. gr. 18 cm ,
- wykonanie tynków zgodnie z kolorystyka,
- wykonanie izolacji przeciwwilgociowej i termicznej ścian fundamentowych wraz z położeniem tynku silikonowego.
- wykonanie nowej opaski z kostki betonowej,
- wykonanie nowych schodów obłożonych warstwą betonu płukanego,
- osuszenie i zaimpregnowanie częściowo zawilgoconych ścian wewnętrznych i zewnętrznych (lazienki),
- wymiana oświetlenia na żarówki i świetlówki typu LED wraz z wymianą opraw,
- wykonanie nowego opierzenia blacharskiego kominów, attyk,
- wymiana parapetów zewnętrznych na stalowe powlekane,
- wymiana rynien i rur spustowych, pasów pod i nad rynnowych,
- wykonanie nowych balustrad,
- demontaż i montaż nowych drabin zewnętrznych,
- wykonania poszerzenia schodów zewnętrznych do piwnicy o 25 cm ,
- wykonanie nowych zadaszeń nad wejściami do budynku,
- wykonanie nowej instalacji odgromowej,
- montaż kasetonu informacyjnego podświetlanego,
- dostosowanie wymiarów, oczyszczenie i malowanie krat zabezpieczających studnie piwnic,
- wymiana drzwi zewnętrznych do piwnicy oraz do pomieszczenia magazynowania odpadków,
- wymiana stolarki okiennej piwnic oraz drzwi balkonowych od sal zajęć żłobka,
- wymiana stolarki drzwiowej i okna podawczego z pom. kuchni,
- izolacja termiczna fundamentów ok. 10 cm p.p.p. z wywinięciem izolacji przeciwwilgociowej i rozbiórka utwardzenia do $1,0 \mathrm{~m}$ wokół budynku,
- ułożenie opaski z kostki betonowej w miejscu demontażu utwardzenia,
- remont pokrycia dachowego- nowa warstwa papy wierzchniego krycia $5,2 \mathrm{~mm}$ na całym dachu,
- montaż podliczników na c.w.u. i c.o.,
- montaż głowic termostatycznych na istniejacych grzejnikach,
- uruchomienie c.w.u. doprowadzonej z kotłowni gazowej usytuowanej w sąsiednim budynku Gimnazjum z montażem zbiornika c.w.u. z grzałką elektryczną ze wsparciem instalacji fotowoltaiczna,
- płukanie chemiczne istniejącej instalacji z regulacją hydrauliczna,
- montaż instalacji fotowoltaicznej,
- likwidacja wyjścia od strony Gimnazjum wraz z wymianą istniejących drzwi zewnętrznych na wewnętrane.
- wszelkie prace uzupemiajace t.j.:
* uzupełnienie ubytków tynków w miejscach wymiany opraw oświetleniowych, spowodowanych wymianą instalacji itp.

1.2. Opis ogólny istniejącego stanu budynku Przedszkola Publicznego w Łobżenicy.

Budynek będący przedmiotem niniejszego opracowania powstał w latach osiemdziesiątych. Budynek Przedszkola jest budynkiem składającym się z trzech segmentów (A, B i E).

Segment A jest budynkiem parterowym, podpiwniczonym o dachu płaski, od strony frontowej zakończony attyką. W tej części znajdują się pomieszczenia kuchni wraz z niezbędnymi pomieszczeniami towarzyszącymi (obieralnia, magazyn odpadków, produktów spoż.) oraz pomieszczenia socjalne pracowników kuchni. W piwnicy znajdują się pomieszczenia gospodarcze.

Segment B jest budynkiem dwukondygnacyjnym, niepodpiwniczonym o dachu płaskim. W segmencie tym znajdują się sale zajęć wraz z pom. socjalnymi (toalety, umywalnie, ciągi komunikacyjne).

Segment E jest budynkiem parterowym, niepodpiwniczonym o dachu płaskim. Do bocznej ściany dobudowane zostaly 3 tarasy. W tej części znajdują się sale zajęć dla dzieci uczęszczających do żłobka.

Konstrukcja budynku w technologii tradycyjnej murowanej dach płaski o nachyleniu połaci około 5%. Założono układ ściany jako dwuwarstwowy tj. tynk zewnętrzny, ściana osłonowa, warstwa nośna, tynk wewnętrzny. Grubość ok. 50 cm .
Stropy stanowia plyty prefabrykowane kanałowe. Stropodach wentylowany o konstrukcji z płyt korytkowych. Budynek jest podłączony do sieci wodociagowej, energetycznej i kanalizacjii.

DANE TECHNICZNE BUDYNKU	STAN ISTNIEJACY	STAN PROJEKTOWANY	RÓŻNICA
1. Powierzchnia zabudowy	$1277,00 \mathrm{~m}^{2}$	$1316,6 \mathrm{~m}^{2}$	$39,6 \mathrm{~m}^{2}$
2. Wysokość budynku	$9,00 \mathrm{~m}$	$9,00 \mathrm{~m}$	-
3. Kubatura	$\approx 6040 \mathrm{~m}^{3}$	$\approx 6317,2 \mathrm{~m}^{3}$	$\approx 277,2 \mathrm{~m}^{3}$
4. Szerokość elewacji frontowej	$77,39 \mathrm{~m}$	$77,60 \mathrm{~m}$	$+0,21 \mathrm{~m}(16 \mathrm{~cm}+5 \mathrm{~cm})$
5. Szerokość elewacji bocznej	$28,00 \mathrm{~m}$	$28,32 \mathrm{~m}$	$+0,32 \mathrm{~m}$
	$12,40 \mathrm{~m}$	$12,72 \mathrm{~m}$	$+0,32 \mathrm{~m}$
6. Liczba kondygnacji	$2(1)$	$2(1)$	-
naziemnych			

1.3. Ogólny opis elewacji istniejącego budynku Przedszkola Publicznego w Łobżenicy.

Istniejące ściany budynku nie spełniają norm izolacyjności cieplnej. Ściany budynku są wykonane w technologii tradycyjnej murowanej. Ściany zakończone są attykami. Współczynnik przenikania ciepła dla ścian zewnętrznych wynosi $1,29 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, nie spełnia aktualnych wymagań Warunków technicznych dotyczaçych ochrony cieplnej budynków $\mathrm{U}_{\max }=0,25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Występują ubytki tynków na elewacjach. W średnim stanie technicznym są rynny i rury spustowe. Stolarka okienna i drzwiowa wykonana z PCV, w dobrym stanie technicznym.

1.4. Kolorystyka.

Budynek zaprojektowano w kolorystyce stonowanej, komponującej się z otoczeniem. Zastosowano kolory:

- biaky perłowy - RAL 1013
- zielony ciemny - RAL 6025
- zielony jasny - RAL 6021
- pomarańczowy - RAL 1017
- obróbki blacharskie, konstrukcja zadaszeń - zielony ciemny - RAL 6025
- schody w technologii betonu płukanego o kolorze kruszywa nawiązującym do koloru elewacji,
UWAGA:
Ostateczne kolory oraz murale ustalić z przedstawicielem inwestora przed przystapieniem do malowania elewacji.

1.5. Opinia geotechniczna

Ocenę geotechniczną podłoża gruntowego dokonano zgodnie z Rozporządzeniem Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 25 kwietnia 2012 r. w sprawie ustalenia geotechnicznych warunków posadowienia obiektów budowlanych. (Dz. U. Z 27 kwietnia 2012 r. poz. 463)

Kategorię gruntu określono na podstawie wykopu kontrolnego w miejscu planowanej budowy.

OCENA GEOTECHNICZNA PODŁOŻA GRUNTOWEGO

W wyniku przeprowadzonej analizy dokumentowanego terenu stwierdza się, że w podłożu panują korzystne warunki dla bezpośredniego posadowienia projektowanego obiektu, a to głównie za sprawą jednolitego podłoża i gruntów niespoistych.
Warunki gruntowe określa się jako dobre.
KATEGORIA GEOTECHNICZNA OBIEKTU
Istniejący budynek zalicza się do obiektów niskich o nieskomplikowanej konstrukcji. Posadowienie projektowanych schodów zewnętranych będzie bezpośrednio na gruntach rodzimych w prostych warunkach gruntowych.
Zalicza się go do pierwszei kategorii geotechnicznej.
Poziom posadowienia fundamentów na głębokości $1,00 \mathrm{~m}$ p.p.t na gruncie rodzimym.
Ściany fundamentowe z bloczków betonowych na zaprawie M5

Uwagi

Dno wykopów należy chronić przed zalaniem wodami powierzchniowymi gruntowymi. W przypadku zalania dna wykopu wodami powierzchniowymi lub gruntowymi należy przede wszystkim usunąć wodę, a następnie zbadać, czy nie nastąpiło naruszenie naturalnej struktury gruntu w podłożu. Rozluźnioną górną warstwę należy usunąć, zastępując ja do poziomu posadowienia chudym betonem, zagęszczonym piaskiem gruboziarnistym, pospółką lub żwirem.
Na dnie wykopu pod fundament należy wykonaé warstwę chudego betonu gr. 10 cm . Podczas wykonania wykopów w warunkach zimowych należy ochronić podłoże gruntowe od przemarzania.

2. Szczegółowy zakres prac objętych opracowaniem.

2.1. Montaż liter elewacyjnych LED

Litery mocowane do elewacji z podświetleniem LED - poziomy napis „PRZEDSZKOLE PUBLICZNE W LOBZZENICY"

- wymiary wysokość 30 cm , grubość profilu ok. 10 cm
- lico litery wykonana z plexi 3mm w kolorze RAL 6025, boki liter wykonane z taśmy aluminiowej w kolorze RAL 6025,
- kompletna instalacja LED
montaż zegarów astronomicznych w rozdzielniach - automatyczna obsługa podświetlania napisu,
- wysokość montażu wg rysunku elewacji

Sposób mocowania
Litery będą mocowane do elewacji zgodnie z rysunkiem elewacji. Mocowanie za pomocą odpowiednich do tego typu podłoża kotew gwintowanych wraz z tuleją do montażu przelotowego zaprawą iniekcyjnq.

2.2. Stolarka drzwiowa.

Przewiduje się wymianę drzwi zewnętrznych piwnicy oraz drzwi od po. magazyn odpadków.

2.1. Stolarka okienna.

Projektuje się wymianę okien piwnic oraz zestaw drzwiowy od wyjsć na tarasy z sal zajęć. Stolarka PCV z profilem pięciokomorowym, system o głębokości ramy 70 mm z uszczelnieniem zewnętrznym. Współczynnik przenikania ciepła $1,1 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Kolor skrzydła oraz ościeży biały - RAL 9001.

2.2. Ściany naziemne.

Ściany zewnętrzne należy ocieplić styropianem EPS $80-036$ grubości 16 cm , metodá "lekko mokrą". Przed przystąpieniem do prac dociepleniowych należy oczyścić ścianę z pozostałości zaprawy, a ubytki tynku uzupełnić i zagruntować. Na płyty styropianowe należy nałożyć warstwę masy klejącej zbrojonej tkaniną szklaną oraz naniesie tynku cienkowarstwowego (mineralnego).Kołki mocujące muszą być zamocowane do warstwy nośnej ściany.
Ościeża okien docieplić w-wą gr. 4 cm . Przed ociepleniem ościeży, styk ościeżnicy okna ze ścianą, uszczelnić taśmą izolacyjną samoprzylepną uszczelniającą.

2.3. Ściany fundamentowe icokół.

Ściany fundamentowe i cokół należy docieplić styrodurem XPS gr. 7 cm . Ściany fundamentowe w części niepodpiwniczonej docieplić do wysokości $0,1 \mathrm{~m}$ poniżej poziomu terenu, natomiast w cz. podpiwniczonej do głębokości fundamentów. Cokół budynku należy wykończyć tynkiem silikonowym.

2.4. Stropodach.

Konstrukcję stropodachu należy docieplić wetną mineralną granulowaną poprzez wdmuchiwanie. Minimalna grubość warstwy 18 cm . Przewiduje się ułożenie nowej warstwy pokrycia z papy wierzchniego krycia gr. $5,2 \mathrm{~mm}$ na osnowie z tkaniny poliestrowej.

2.5. Parapety zewnẹtrzne, obróbki blacharskie, rury spustowe.

W projekcie przewidziano wymianę parapetów na stalowe powlekane powłokami malarskimi w kolorze RAL 6025 , o szerokości 46 cm . Ponadto przewidziano wymianę rynien i rur spustowych wraz z czyszczakami na stalowe w kolorze RAL6025. W związku z dociepleniem ścian budynku należy wymienić obróbki blacharskie okapów i attyk na nowe. Przy okapach należy uwzględnić wykonania dodatkowego zakładu papy o szerokości około 1 m . Obróbki blacharskie wykonać zgodnie z warunkami technicznymi wykonania i odbioru robót blacharskich. Parapety zewnętrzne wykonać zachowując odpowiedni spadek gwarantujący należyte odprowadzenie wód opadowych. Należy zwrócić szczególną uwagę na zabezpieczenie masami silikonowymi powierzchni styku obróbek z przylegajaçą stolarką okienną.

2.6. Instalacja odgromowa.

Zaprojektowano nową instalację odgromową.- wg projektu branży elektrycznej.

2.7. Opaska betonowa.

Istniejącą opaskę z betonową wokół budynku należy rozebrać a następnie ułożyć nową z kostki betonowej wraz z obrzeżami. Szerokość opaski dostosować do istniejącej.

2.8. Zadaszenia nad wejściami

Projektuje się przedłużenie istniejących zadaszeń nad wejściami do budynku. Konstrukcja zadaszeń stalowa z profili zamkniętych. Projektowane zadaszenia wykończyć blachą stalową w kolorze ciemny zielony. Stal profilowa klasy S275. Zadaszenia wykonać zgodnie z rysunkami szczegółowymi.

Nad wejściem zewnętrznym do piwnicy projektuje się wykonać zadaszenie z plyt z poliwęglanu komorowego na konstrukcji stalowej z rur ze stali nierdzewnej o śr. 42 mm .

2.9. Schody zewnętrzne, remont rampy

Projektuje się wyburzenie istniejących schodów i wymurowanie nowych betonowych obłożonych warstwą betonu płukanego. Dodatkowo należy zdemontować kostkę betonowej na rampie dla niepełnosprawnych i obłożyć warstwą betonu płukanego. Należy zastosować kruszywo odpowiadające kolorystyce elewacji.

2.10. Balustrady zewnętrzne.

Projektuje się nowe balustrady przy schodach zewnętrznych. Balustrady nalezzy wykonać w rur ze stali nierdzewnej o śr. 42mm. Wysokość poręczy głównej na wysokości $1,10 \mathrm{~m}$, poręcze pośrednie na rampie dla niepełnosprawnych na wysokości 75 i 90 cm .

2.11. Drabiny zewnẹtrzne.

Projektuje się wymianę istniejących drabin zewnętrznych na nowe drabiny systemowe mocowane na stałe do budynku. Drabiny powinny spelniać wymagania Rozporządzenia Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Podczas wyboru drabiny należy przestrzegać następujących wytycznych:

- od wysokości ponad 3m wymagane są pałaki ochronne zabezpieczające przed upadkiem,
- jeżeli szczelina przy wyjściu jest większa niż 75 mm należy ją zmniejszyć montujạc dodatkowo stopień zejścia,
- przy niebezpiecznych wyjściach należy stosować barierki przymocowane do drabiny (obustronnie), -maksymalny rozstaw pałąków zabezpieczających wynosi 800 mm ,
- minimalna odległość drabiny od ściany wynosi 150 mm ,
- maksymalna odległość pomiędzy kotwami wynosi 2000 mm .

2.12. Zamurowanie wnęki.

Przewiduje się zamurowanie wnęki od strony Gimnazjum bloczkami z betonu komórkowego klasy M600 gr. 24 cm . Schody przy wnęce należy zdemontować. Wewnątrz budynku zagłę̣bienie po schodach wyrównać do poziomu posadzki. Posadzkę w powstałym pomieszczeniu wykończyć panelami podłogowymi.

2.13. Instalacja fotowoltaiczna.

Szczegółowy opis projektowanej instalacji fotowoltaicznej - wg projektu branży elektrycznej.

2.14. Roboty budowlane wewnątrz budynku.

Wewnątrz budynku planuje się następujace prace budowlane:

2.14.1 Wymiana oświetlenia.

Projektuje się wymianę wszystkich opraw oraz źródła światla na LED. Szczegółowy opis wg projektu branży elektrycznej.

2.14.2 Prace branży sanitarnej.

Projekt zakłada:

- montaż podliczników na c.w.u. i c.o.,
- montaż głowic termostatycznych na istniejących grzejnikach,
- przebudowa c.w.u zgodnie z projektami branżowymi,
- płukanie chemiczne istniejacej instalacji z regulacją hydrauliczna.

Szczegółowy opis projektowanych prac wg projektu branży sanitarnej.

2.14.3 Wymiana stolarki drzwiowej wewnętrznej.

Projektuje się wymianę istniejących drzwi PCV z pom. 1.45A. Należy zastosować drzwi jednoskrzydłowe plytowe w naturalnej okleinie.

2.14.4 Malowanie, prace uzupelniajace.

Po wykonanych pracach związanych z wymianą opraw oświetleniowych należy uzupełnić powstałe braki w tynkach i pomalować.

3. Technologia wykonania termomodernizacji ścian budynku Centrum Profilaktyki i Aktywności Społecznej

3.1. Prace przygotowawcze.

Przed przyklejeniem płyt styropianowych należy wykonać prace przygotowawcze polegające na:

- oczyszczeniu ścian,
- zdemontowaniu istniejących parapetów,
- zdemontowaniu urzadzeń zainstalowanych na elewacji np. kamer, tablic informacyjnych,
- obkuciu otworów okiennych i drzwiowych na gr. ok. 5 cm w celu wykonania obróbki termicznej wnęk,
- demontażu rynien i rur spustowych,
- wymianie instalacji odgromowej. Nową instalację należy wykonać w rurach ochronnych ukrytych w brużdzie ściany. Połączenia odprowadzeń instalacji odgromowej z bednarką projektuje się w skrzynkach,
- odkopanie ścian fundamentowych do głębokość około $0,1 \mathrm{~m}$ (w części podpiwniczonej do głębokości fundamentów) w celu docieplenia,
- demontażu istniejących obróbek blacharskich,
- wyburzenie istniejących tarasów i wymurowanie nowych schodów.
- zamurowanie otworu drzwiowego od strony Gimnazjum.

3.2. Wymagania w zakresie nośności i przygotowania podłoża.

Przed przystąpieniem do prac termomodernizacyjnych należy przygotować powierzchnie ścian. W razie potrzeby naprawić i wyrównać ubytki, odparzone fragmenty tynku skuć, nierówności ścian powyżej 10 mm należy wyrównać warstwą zaprawy wyrównawczej lub szpachlowej. Powierzchnia ścian powinna być stabilna, sucha i bez zanieczyszczeń. Stare powłoki malarskie należy usunąć, powierzchnie ścian oczyścić z kurzu i pyłu za pomocą wody pod ciśnieniem lub mechanicznie np. przy uzyciu szczotek drucianych. Podłoża stare, chłonne i pylące należy zagruntować.
Przed przystąpieniem do przyklejania płyt, nie otynkowane ściany betonowe lub z cegly ceramicznej lub silikatowej, należy zmyć wodą pod dużym ciśnieniem. Elementy elewacji, takie jak okna, drzwi muszą być zamontowane przed rozpoczęciem robot ocieplających. Należy zwrócić uwagę na zachowanie odpowiedniej odległości zakończeń obróbek blacharskich od powierzchni elewacji, jak ich odpowiednie wyprofilowanie umożliwiające prawidłowe odprowadzenie wód opadowych.
Wszystkie prace wykonać zgodnie z instrukcjami producenta systemu.

3.3. Opis systemu technologii docieplenia.

- Montaż profili startowych: (listew kątowych z blachy ocynkowanej na poziomie góry cokołu kołkami rozporowymi do ściany, co 1 mb . z wywiniętym pasem z tkaniny szklanej.
- Przyklejanie płyt styropianowych: Płyty styropianu układać poziomo, mijankowo w „cegiełkę" - także w narożnikach, na docisk i mocować do ściany po związaniu zaprawy klejowej ($\min .48$ godz.) systemowymi łącznikami z tworzywa, zaczynając od dołu, ewentualne szczeliny miedzy płytami wypełnić klinami ze styropianu lub pianką ekspansywną (nie wolno zalewać szczelin zaprawą lub klejem). Ilość kołków i rozstaw na płaszczyźnie 4 do 6 sztuk na 1 m 2 , w obszarze narożnikowym (szerokość 2 m) do wysokości 8 m . 8 sztuk na 1 m 2 , wyżej - 10 sztuk na 1 m 2 .
W celu uzyskania równej powierzchni zamocowanych płyt należy przeszlifować całą licową powierzchnię styropianu pacą z grubym papierem ściernym.
Szczegółowe dyspozycje znajdują się w wytycznych technologicznych systemu.
- Wzmocnienie krawędzi i naroży otworów: naroża wypukłe oraz ościeżnice drzwi wejściowych zabezpieczyć profilami narożnymi z paskami z siatki z włókna szklanego, narożniki wzmocnić pasami z tkaniny szklanej naklejonej pod kątem 45°.
- Warstwa zbrojona na styropianie: można ją wykonać na powierzchni wyrównanych i oczyszczonych płyt ze styropianu nie wcześniej niż po 3 dniach od ich przyklejenia. Należy nałożyć zaprawę klejąco-szpachlową na podłoże jednolitą warstwą grub. $3-4 \mathrm{~mm}$, a następnie wtopić w nią siatkę z włókna szklanego. Siatka winna być równomiernie napięta i całkowicie zatopiona w zaprawie. Sąsiednie pasy siatki należy przyklejać z zakładem minimum 10 cm .
- Gruntowanie: na suchą warstwę zbrojoną (po 2-3 dniach przy suchej pogodzie) nanieść preparat gruntujacy.
- Tynk zewnętrzny: polikrzemianowa (niskoalkaliczna silikatowa) wyprawa tynkarska o fakturze pełnej nakładać równomiernie i zacierać koliście.
- Tynk cokolu: Jako materiał termoizolacyjny zastosować płyty 10 cm (styropian samo gasnący). Tynk mozaikowy nakładać po przygotowaniu podłoża, rozprowadzić równomiernie i zacierać koliście.
- Styki układu dociepleniowego ze stolarką, ṡlusarką i obróbkami blacharskimi uszczelnić trwale plastyczną masą akrylową.
- Przerwy technologiczne: w trakcie nakładania tynków zaplanować tak, aby pokrywały się z liniami naturalnych rozgraniczeń elewacji jak narożniki, dylatacje lub wykonać je z dużą dokładnością stosując samoprzylepne taśmy malarskie.
- Dylatacje: zachować istniejaqce dylatacje w warstwie zastosować systemowe listwy dylatacyjne.

4. Uwagi koŕcowe.

- Prace należy przeprowadzić zgodnie z zasadami sztuki budowlanej i warunkami wykonywania prac dekarskich, tynkarskich i malarskich,
- Stosować wyłącznie materiały i systemu posiadające znak dopuszczenia do stosowania w budownictwie B, Ce lub deklaracji zgodności z regułami sztuki budowlanej.
- Wszystkie materiały stosować zgodnie z zaleceniami producenta dotyczącymi przygotowania podła, przygotowania materiału, nakładania, warunków wysychania, wymaganych przerw technologicznych.
- Prace tynkarskie i malarskie prowadzić przy bezdeszczowej pogodzie, w temperaturze powietrza od $+5^{\circ} \mathrm{C}$ do $+25^{\circ} \mathrm{C}$, wilgotności względnej powietrza poniżej 70%.
- Ewentualne podane nazwy materiałów slużą jedynie jako wskazanie przykladowych rozwiązań. Wszystkie materiały można zastąpić materialami o niegorszych parametrach.

5. Ochrona przeciwpożarowa.

Klasyfikację budynku pod względem pożarowym oraz wymagania odporności ogniowej elementów budynku wykonano w oparciu o Rozporządzenie Ministra Infrastruktury z
dnia 7 kwietnia 2004 roku zmieniające rozporządzenie w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie.

Dane techniczne budynku:

- powierzchnia zabudowy
- $\quad 1277 \mathrm{~m}^{2}$
- kubatura
- $\quad \approx 6040 \mathrm{~m}^{3}$
- wysokość budynku(góra attyki)
- $\quad 9,00 \mathrm{~m}$
- szerokość elewacji frontowej
- $\quad 77,39 \mathrm{~m}$
- szerokość elewacji bocznej
- $28,00 \mathrm{~m}(12,40 \mathrm{~m})$
- liczba kondygnacji naziemnych
- 2

Klasyfikacja budynku pod względem pożarowym

1) Kategoria zagrożenia ludzi: "ZL II" (Przedszkole)
2) Grupa wysokości budynku: 'N" (budynek niski)
3) Wymagana klasa odporności ogniowej: „B"

Wymagania odporności ogniowej elementów budynku:

1) Sciana zewnętrzna: EI 30
2) Ocieplenie: nierozprzestrzeniające ognia,

Ocena spelnienia wymagań przepisów przeciwpożarowych.
Ocenę pod względem spełnienia wymogów przepisów przeciwpożarowych dokonano dla elementów budynku podlegających modernizacji:

1) Ściana zewnętrzna - odporność ogniowa ściany EI 30
2) Ocieplenie budynku styropianem samo gasnącym grubości 16 cm z zastosowaniem technologii lekko-mokrej nierozprzestrzeniające ognia określone na podstawie Klasyfikacji Ogniowej w zakresie rozprzestrzeniania ognia

Przyjęte rozwiązania projektowe spelniają wymagania przepisów ochrony pożarowej budynku.

mgr inż. arch. Maria Andrzejewska-Slosecka
Uprawnlenla budowlane do profelitowanla bez ograniczeń w specialnoscl architeltoniczne)

Nr exvid. 198/79 Bg
Czionek Izby Aschitektów KPOIA-Mr ewid. KP-0137
mer ing: Mirsstan Mlynarek
Hpzawhider cudowhan

 w specjalnosei kenstrukeyine budowlanej

INFORMACJA DOTYCZACA BEZPIECZEŃSTWA
I OCHRONY ZDROWIA

Projektant:
Architektura :
mgr inż. arch. Maria Andrzejewska-Slosecka ul. Hrubieszowska 5 85-363 Bydgoszcz
Konstrukcja :
mgr inż. Mirosław Młynarek UI. Norwida 14, 89-100 Nakło n. Not.
Instalacje sanitame:
mgr inż. Piotr Boczan ul. Dworcowa 9/1 89-121 Ślesin
Instalacje elektryczne:
mgr inż Leszek Sobala ul. Kraszewskiego 14A 89-100 Nakło nad Notecia

Nakło nad Notecią, 10.03.2016

Informacja dotycząca bezpieczeństwa i ochrony zdrowia

Inwestycja :

TERMOMODERNIZACJA I PRZEBUDOWA BUDYNKU PRZEDSZKOLA PUBLICZNEGO W ŁOBŻENICY WRAZ Z ROBOTAMI BUDOWLANYMI TOWARZYSZACYMI

Inwestor:

GMINA ŁOBŻENICA, UL. SIKORSKIEGO 7, 89-310 ŁOBŻENICA

1) WSKAZANIA ELEMENTÓW ZAGOSPODAROWANIA DZIALKI LUB TERENU, KTÓRE MOGA STWAŻAĆ ZAGROŻENIE BEZPIECZEŃSTWA I ZDROWIA LUDZI

Planowane roboty budowlane w przypadku ich właściwego wykonania, zgodnie
z zasadami sztuki budowlanej przez osoby posiadające wymagania kwalifikacji oraz pod nadzorem osób posiadających uprawnienia nie będą stwarzały zagrożenia dla użytkowników i osób trzecich.
2) WSKAZANIA DOTYCZACE PRZEWIDYWANYCH ZAGROŻEŃ WYSTĘPUJĄCYCH PODCZAS REALIZACJI ROBÓT BUDOWLANYCH, OKREŚLAJACYCH SKALE I RODZAJE ZAGROŻEŃ ORAZ MIEJSCE I CZAS ICH WYSTĘPOWANIA

Roboty powinny być wykonane zgodnie z projektem budowlanym.

- brygada wykonująca roboty budowlane powinna być zapoznana z projektem.

Podczas realizacji obiektu należy przestrzegać przepisy bhp i przeciwpożarowe w budownictwie. Do robót mogących spowodować zagrożenie dla zdrowia i życia są:

- prace związane z rozładunkiem i transportem materiałów
- prace murarskie w tym również na wysokości
- prace spawalnicze i montażowe
- roboty murarskie środkami chemicznymi
- roboty dekarskie
- prace z użyciem sprzętu budowlanego i narzędzi (betoniarka, szlichta kątowa, spawarka, piła, itp.)
- montaż stolarki okiennej i drzwiowej
- roboty dociepleniowe
- roboty wykończeniowe zewnętrze zwłaszcza na wysokości
- roboty instalacyine na wysokościach - np. na dachu

Podczas wykonywania robót szczególną uwagę należy zwrócić na:

- whaściwe wykonanie szalowania elementów żelbetowych
- właściwe wykonanie podstemplowań przy użyciu stempli pelnowartościowych

Osoby przebywające na budowie powinny używać przy poszczególnych pracach następujaccy sprzẹt ochrony osobistej:

- kaski przy zagrożeniu upadku przedmiotu lub czlowieka z wysokości,
- buty z noskami stalowymi i sprzęt dielektryczny, szelki bezpieczeństwa z linkami asekuracyjnymi, rękawice ochronne itp.

Wszyscy pracownicy budowy powinni mieć odpowiednie badania lekarskie, stosowne do rodzaju wykonywanej pracy, w tym pracujący na wysokościach badania lekarskie wysokościowe.

Pracownicy zatrudnieni na budowie powinni mieć następujące przeszkoelnie bhp:

- wstępne ogólne,
- podstawowe lub okresowe,
- stanowiskowe.

Pracownicy obstugujący maszyny powinni mieć odpowiednie przeszkolenie i uprawnienia. Operator oddalajacy się od maszyny powinien ją wylączyć i zabezpieczyć przed dostępem osób niepowołanych.

Podczas pracy poszczególnych maszyn na budowie powinny być umieszczone na widocznym miejscu instrukcje bezpiecznej obstugi: betoniarki, tarczówki, tynkownicy itp.

Budowa obiektu nie zawiera rodzaju robót szczególnie niebezpiecznych wymienionych w Rozporzadzeniu Ministra Infrastrukury z dnia 23 czerwca 2003 r. W sprawie dotyczącej bezpieczeństwa i ochrony zdrowia oraz planu bezpieczeństwa i ochrony zdrowia (Dz.U. Nr 120 z 2003 r. Poz. 1126). Kierownik budowy przed przystąpieniem do
wykonywania robót budowlanych określi w planie bezpieczeństwa i ochrony zdrowia wykaz robót jakie muszą być poprzedzone instruktażem osób je wykonujących.
3) Wskazanie środków technicznych i organizacyjnych, zapobiegających niebezpieczeństwom wynikającym z wykonywania robót budowlanych w strefach szczególnego zagrożenia zdrowia lub wich sąsiedztwie, w tym zapewniających bezpieczną i sprawną komunikację, umożliwiającą szybką ewakuację na wypadek pożaru, awarii lub innych zagrożeń.

Jeśli podczas wykonywania prac budowlanych dojdzie do wypadku na terenie placu budowy a poszkodowany wymagać będzie pomocy medycznej należy powiadomić Pogotowie Ratunkowe - nr 999 lub 112

Jeżeli w wyniku wypadku dojdzie do poważnego uszkodzenia ciała lub zgonu należy powiadomić Państwową Inspekcję Pracy.

Jeżeli na terenie budowy dojdzie do katastrofy budowlanej należy powiadomić Powiatowego Inspektora Nadzoru Budowlanego .

W przypadku:

- pożaru - Straż Pożarną - 998
- awarii energetycznej - Zakład Energetyczny
- awarii sieci wodociągowej - Zakład Wodociągów
- za każdym razem kierownika budowy jeżeli jest nieobecny na placu budowy

VI. INWENTARYZACJA - RYSUNKI TECHNICZNE

RZUT PIWNICY
 skala 1:100

ZESTAWIENIE POMIESZCZEŃ-PIWNICA		
NR	NAZWA POM.	POWIERZ. [m^{7}]
0.1	Schody	6,82
0.2	Komunikacja	5,03
0.3	Pom. gospodarcze	16,42
0.4	Warszat	10,43
0.5	Kotlownia	16,93
0.6	Pom. gospodarcze	9,86
0.7	Pom. gospodarcze	9,62
0.8	Pom. gospodarcze	21,22
0.9	Komunikacja	13,42
0.10	Magazyn warzyw	14,39
0.11	Magazyn warzww	20,55
0.12	Pom. gospodarcze	18,71
0.13	Pom. gospodarcze	9,09
0.14	Pom. gospodarcze	13,22
0.15	Pom. gospodarcze	3,82
0.16	Pom. gospodarcze	18,03
0.17	Komunikacja	6,05
0.18	Komunikacja	24,83

ZESTAWIENIE POMIESZCZEŃ PIETTRO		
$\begin{gathered} \hline \text { NR } \\ \hline \text { ROM } \\ \hline \end{gathered}$	nazwa pom.	$\begin{aligned} & \text { Powilerz } \\ & {[\mathrm{m}]} \end{aligned}$
2.1	Schooy	
2.2	Komunikacia	42,03
2.3	Zmmwalia	7,34
2.4	Rozazielnia	11,94
2.5	Pom. gospodarcze	2,20
2.6	Sala zajec	58,31
2.7	Skad lezakiow	7,39
2.8	Komunikacia	2.82
2.9	Umywalia	16,40
2.10	Umywalia	16,77
2.11	Komunikacia	2,99
2.12	Sala zajec	15,39
2.13	Szatria	15,67
2.14	Salazzieç	55,80
2.15	Skkad lezzaów	4,99
2.16	Pom. gospodarcze	2,90
2.17	Sala gimnastyczna	62,31
2.18	Pokój personelu	10,51

\section*{	Temat oppocoonania:
Termonnoderizacia i przebudowa budyrku Przedszzola Publicznego w Lobizenicy	}

ProjektowadSorawazit

elewacia potnocna

田田
 四

田田田
田田田

目目目目田胃

 NuminnELEWACJA POŁUDNIOWA

VII. ARCHITEKTURA - RYSUNKI TECHNICZNE

ZAKRES PRAC BUDOWLANYCH:

1. Docieplenie ścian fundamentowych z zewnętrz warstwq styroduru XPS gr. 7 cm .
2. Wymiana stolarki okiennej i drzwi zewnętrznych.

RZUT PIWNICY skala 1:100

ZESTAWIENIE POMIESZCZEŃ-PIWNICA		
$\begin{gathered} \text { NR } \\ \text { POM. } \end{gathered}$	NAZWA POM.	POWIERZ. [m^{2}]
0.1	Schody	6,82
0.2	Komunikacja	5,03
0.3	Pom. gospodarcze	16,42
0.4	Warsztat	10,43
0.5	Kotlownia	16,9
0.6	Pom. gospodarcze	9,86
0.7	Pom. gospodarcze	9,62
0.8	Pom. gospodarcze	21,22
0.9	Komunikacja	13,42
0.10	Magazyn warzyw	14,39
0.11	Magazyn warzyw	20,55
0.12	Pom. gospodarcze	18,71
0.13	Pom. gospodarcze	9,09
0.14	Pom. gospodarcze	13,22
0.15	Pom. gospodarcze	3,82
0.16	Pom. gospodarcze	18,03
0.17	Komunikacja	6,05
0.18	Komunikacja	24,83

UWAGl:

1. Wszystkie wymiary i wielkości sprawdzić na budowie
2. Przed przystqpieniem do prac sprawdzić stan techniczny podioża.
3. W celu prawidłowego zastosowania produktów należy zopoznać się z treściq instrukcji producenta systemu termomodernizacyjnego oraz z kartami technicznymi produktōw.
4. Detole budowlone sq rysunkami poglqdowymi - rozw techniczne dostosować do konkretnych miejsc w
termomodernizowanym budynku.

Temat opracowania: Termomodernizocja i przebudowa budyrku Frzedszkola Publicznego w Lobżenicy; dz. nr 499. ul. Botorego 5, 89-310 Eobzenica	
Temat Iysunku: Rzut piwnicy	
Inwestor: Grina Kobżenica ul. Sikorskiego 7, 89-310 Lobżenico	
Opracowal: mgr inż. Mateusz Dyrta	
Data:	10.03.2016
RYS. NR A-01	SKALA $1: 100$

UWAGI:

1. OPASKE WYKONAĆ 7 KOSTKL BETONOWEJ WG SZCZEGÓKU.
2. SZEROKOŚĆ OPASKI MIN. 50 cm .
3. KOLOR KRUSZYWA ZASTOSOWANY DO OBEOŻENIA SCHODÓW I PODJAZDU DOPASOWAĆ DO KOLORYSTYKI ELEWACJ.
4. OPASKI BETONOWE WYKONAĆ ZE SPADKIEM 2% W KIERUNKU OD BUDYNKU
5. UBYTKI POWSTAEE PODCZAS PRAC TERMOMODERNIZACYJNYCH NALEŻY UZUPEENIĆ.
6. PRZED PRZYSTAPIENIEM DO PRAC, NALEZZY WSZYSTKIE WYMIARY SPRAWDZIĆ NA BUDOWE. W PRZYPADKU ZNACZACYCH RÓŻNIC NAIFŻY POINFORMOWAĆ a JTORA OPRACOWANA.

SZCZEGOK OPASK

2\% OBRZEZE BETONOWE

Temat opracowania: Termomodernizac ja i przebudowa budynku Przedszkola Publicznego w Lobżenicy; dz. nr 499, ul. Batorego 5, 89-310 Lobżenica
Temat rysunku: Przekrój A-A
Inwestor: Gmina kobżenica ul. Sikorskiego 7, 89-310 kobżenica
Projektowat/Sprawdzil:
Opracował:mgrinż. Mateusz Dyrla
Data:
RYS. NR A-06

Legenda

mater

ELEWACJA WSCHODNIA

Legenda Tynk silikonowy; Kolor biały perłowy - RAL 1013	Brbata	PRZYKŁADOWY MURAL WZÓR DOBRAĆ PO UZGODNIENIU Z INWESTOREM NA ETAPIE BUDOW
Nomer, Korzeeny vady, PAL	隹	
	Fenamemit	
- rynny, rury spustowe, uchwyty do rynien i rur spustowych, obróbki blacharskie zadaszeń należy wykonać ze stali powlekanej - RAL 6025 - na elewacji przewiduje się miejsca na murale, obrazy UWAGA: KOLORY WSZYSTKICH MATERIAŁÓW WYKONAWCA WINIEN PONOWNIE UZGODNIĆ Z INWESTOREM PRZED REALIZACJA ZAMÓWIENIA PRZEDSTAWIAJAC FABRYCZNĄ PALETĘ PRODUKTÓW	memer	
	Onam	

ELEWACJA POŁUDNIOWA

ELEWACJA ZACHODNIA

LEGENDA

UK_AD WARSTW DOCIEPLENIA
W METOZZIE LEKKIEJ MONRE

DETAL.A
WYKOŃCZENIE KRAWĘDZI OCIEPLENIA: A - SIATKA, B- LISTWA COKOKOWA

PRZYKKADOWE ROZMIESZCZENIE KOKKOW PRZY OCIEPLENU (NA $1 \mathrm{~m}^{2}$ OCIEPLENIA PRZYPADA 6 KOKKOW)

uWAGA

SZZEGOKOWE ROZMAZANIA DETALL MOGA ROZZNIĆ SIE OD SIEBIE W ZALEĖNOŚCI OD WYBRANEGO ROZWIAZANIA TPOWEGO JEDNEGO Z PRODUCENOOW DOCIIPLLEN FASADOWYCHZE STYROPIANU.

TECHNOLOGIA DOCIEPLENIA ŚCIAN ZEWNĘTRZNYCH - DETALE

DOCIEPLENIE NAROŻA ZEWNĘTRZNEGO

SKALA 1:10

1. ELEWACYJNA PŁYTA ZE STYROPIANU
2. ZAPRAWA KLEJOWA DO MOCOWANIA PŁYT STYROPIANOWYCH I WYKONANIA WARSTWY ZBROJENIA
3. ZAPRAWA KLEJOWA DO MOCOWANIA PŁYT STROPIANOWYCH
4. SIATKA ZBROJACA Z WŁÓKNA SZKLANEGO
5. PODKŁAD TYNKARSKI
6. CIENKOWARSTWOWY TYNK STRUKTURALNY
7. KOŁEK DO MOCOWANIA TERMOIZOLACJI

UWAGA:
W PRZYPADKU WYKOŃCZENIA ELEWACJI TYNKIEM SILIKATOWYM. 5. PODKŁAD TYNKARSKI
6. SILIKATOWY TYNK DEKORACYJNY

W PRZYPADKU ZASTOSOWANIA TYNKU SILIKONOWEGO:

UWAGA:
Z UWAGI NA ZASTOSOWANIE RÓŻNYCH
MATERIAŁÓW ŚCIANY ZEWNĘTRZNEJ ZALECA SIĘ PRZED PRZYSTAPIENIEM DO PRAC BUDOWLANYCH ODKRYWKI W RÓŻNYCH CZĘŚCIACH BUDYNKU W
CELU JEDNOZNACZNEGO OKREŚLENIA ZATOSOWANYCH MATERIAŁÓW ORAZ DOBORU SYSTEMU OCIEPLENIA.

5. PODKŁAD TYNKARSKI

6. SILIKONOWY TYNK DEKORACYJNY

UWAGA :

SZCZEGÓŁOWE ROZWIAZANIA DETALI MOGA RÓŻNIĆ SIĘ OD SIEbIE W ZALEŻNOSCI OD WYBRANEGO ROZWIAZANIA TYPOWEGO JEDNEGO Z PRODUCENÓW DOCIEPLEŃ FASADOWYCH ZE STYROPIANU.

Temat opracowania:
Termomodernizacja i przebudowa budynku Przedszkola
Publicznego w Łobżenicy; dz. nr 499, ul. Batorego 5,
$89-310$ Łobżenica
:---
Detal nr 1 - docieplenie naroża zewnętrznego
Inwestor: Gmina kobżenica ul. Sikorskiego 7, 89-310 tobżenica
ProjektowałłSprawdzif:
Opracował: mgr inż. Mateusz Dyrla
Data:
RYS. NR A-13

DOCIEPLENIE NAROŻA WEWNĘTRZNEGO

SKALA 1:10

1. ELEWACYJNA PŁYTA ZE STYROPIANU
2. ZAPRAWA CEMENTOWA DO MOCOWANIA PŁYT STYROPIANOWYCH I WYKONANIA WARSTWY ZBROJENIA
3. ZAPRAWA CEMENTOWA CO MOCOWANIA PŁYT STROPIANOWYCH
4. SIATKA ZBROJĄCA Z WtÓKNA SZKLANEGO
5. PODKŁADOWA MASA TYNKARSKA POD TYNKI CIENKOWARSTWOWE
6. CIENKOWARSTWOWY TYNK AKRYLOWY NAKŁADANY RĘCZNIE
7. KOŁEK DO MOCOWANIA TERMOIZOLACJI TYPU KDS

UWAGA:

Z UWAGI NA ZASTOSOWANIE RÓŻNYCH MATERIAŁÓW ŚCIANY ZEWNĘTRZNEJ ZALECA SIĘ PRZED PRZYSTAPIENIEM DO PRAC BUDOWLANYCH ODKRYWKI W RÓŻNYCH CZĘŚCIACH BUDYNKU W CELU JEDNOZNACZNEGO OKREŚLENIA ZATOSOWANYCH MATERIAŁÓW ORAZ DOBORU SYSTEMU OCIEPLENIA.

UWAGA:
SZCZEGÓŁOWE ROZWIAZANIA DETALI MOGA RÓŻNIĆ SIĘ OD SIEBIE W ZALEŻNOSCI OD WYBRANEGO ROZWIAZANIA TYPOWEGO JEDNEGO Z PRODUCENÓW DOCIEPLEŃ FASADOWYCH ZE STYROPIANU.

Temat opracowania: Termomodernizacja i przebudowa budynku Przedszkola Publicznego w Łobżenicy; dz. nr 499, ul. Batorego 5, 89-310 kobzenica
Temat rysunku: Detal nr 2 - docieplenie naroża wewnętrznego
Inwestor: Gmina Łobżenica ul. Sikorskiego 7, 89-310 kobżenica
Projektowat/Sprawdzit:
Opracował : mgr inż. Mateusz Dyrla
Data: 10.03.2016
RYS. NR A-14 SKALA 1:10

DOCIEPLENIE OTWORU OKIENNEGO PRZEKRÓJ POZIOMY

SKALA 1:10

1. ELEWACYJNA PEYTA ZE STYROPIANU
2. ZAPRAWA CEMENTOWA DO MOCOWANIA PŁYT STYROPIANOWYCH I WYKONANIA WARSTWY ZBROJENIA
3. ZAPRAWA CEMENTOWA DO MOCOWANIA PŁYT STYROPIANOWYCH I WYKONANIA WARSTWY ZBROJENIA
4. SIATKA ZBROJĄCA Z WŁÓKNA SZKLANEGO
5. PODKŁAD TYNKARSKI
6. CIENKOWARSTWOWY TYNK STRUKTURALNY
7. KOLEK DO MOCOWANIA TERMOIZOLACJI TYPU KDS
8. MASA SILIKONOWA
9. PIANKA USZCZELNIAJACA
10. LISTWA NAROŻNA Z SIATKA
11. TAŚMA ROZPRĘŻNA

UWAGA:
W PRZYPADKU WYKOŃCZENIA ELEWACJI TYNKIEM

SILIKATOWYM.

5. PODKŁAD TYNKARSKI
6. SILIKATOWY TYNK DEKORACYJNY

W PRZYPADKU ZASTOSOWANIA TYNKU SILIKONOWEGO:
5. PODKŁAD TYNKARSKI
6. SILIKONOWY TYNK DEKORACYJNY

UWAGA :

SZCZEGÓKOWE ROZWIAZANIA DETALI MOGA ROŻNIĆ SIE OD SIEBIE W ZALEŻNOSCI OD WYBRANEGO ROZWIAZANIA TYPOWEGO JEDNEGO Z PRODUCENOW DOCIEPLEŃ FASADOWYCH ZE STYROPIANU.

UWAGA:
Z UWAGI NA ZASTOSOWANIE RÓŻNYCH
MATERIAŁÓW ŚCIANY ZEWNĘTRZNEJ ZALECA SIĘ PRZED PRZYSTAPIENIEM DO PRAC BUDOWLANYCH ODKRYWKI W RÓŻNYCH CZĘŚCIACH BUDYNKU W CELU JEDNOZNACZNEGO OKREŚLENIA ZATOSOWANYCH MATERIAŁÓW ORAZ DOBORU SYSTEMU OCIEPLENIA.

```
Temat opracowania:
Termomodernizacja i przebudowa budynku Przedszkola Publicznego w kobżenicy; dz. nr 499, ul. Batorego 5,
89-310 kobżenica
```

Temat rysunku:
Detal nr 3 - docieplenie otworu okiennego

Inwestor:
Gmina kobżenica
ul. Sikorskiego 7, 89-310 Łobżenica

Projektowat/Sprawdzit:
Opracował : mgr inż. Mateusz Dyrla
Data:

DOCIEPLENIE NADPROŻA PRZEKRÓJ PIONOWY

SKALA 1:10

1. ELEWACYJNA PLYTA ZE STYROPIANU
2. ZAPRAWA CEMENTOWA DO MOCOWANIA PŁYT STYROPIANOWYCH I WYKONANIA WARSTWY ZBROJENIA
3. ZAPRAWA CEMENTOWA DO MOCOWANIA PŁYT STYROPIANOWYCH I WYKONANIA WARSTWY ZBROJENIA
4. SIATKA ZBROJACA Z WŁÓKNA SZKLANEGO
5. PODKŁAD TYNKARSKI
6. CIENKOWARSTWOWY TYNK STRUKTURALNY
7. KOLEK DO MOCOWANIA TERMOIZOLACJI TYPU KDS
8. MASA SILIKONOWA
9. PIANKA USZCZELNIAJACA
10. LISTWA NAROŻNA Z SIATKA
11. TAŚMA ROZPRĘŻNA

UWAGA:
W PRZYPADKU WYKOŃCZENIA ELEWACJI TYNKIEM SILIKATOWYM.
5. PODKŁAD TYNKARSKI
6. SILIKATOWY TYNK DEKORACYJNY

W PRZYPADKU ZASTOSOWANIA TYNKU SILIKONOWEGO:
5. PODKŁAD TYNKARSKI
6. SILIKONOWY TYNK DEKORACYJNY

UWAGA:
SZCZEGÓKOWE ROZWIAZANIA DETALI MOGA ROZZNIC SIE OD SIEBIE W ZALEZNOSCI OD WYBRANEGO ROZWIAZANIA TYPOWEGO JEDNEGO Z PRODUCENÓW DOCIEPLEŃ FASADOWYCH ZE STYROPIANU.

UWAGA:
Z UWAGI NA ZASTOSOWANIE RÓŻNYCH
MATERIAŁÓW ŚCIANY ZEWNĘTRZNEJ ZALECA SIE PRZED PRZYSTAPIENIEM DO PRAC BUDOWLANYCH ODKRYWKI W RÓŻNYCH CZĘŚCIACH BUDYNKU W CELU JEDNOZNACZNEGO OKREŚLENIA ZATOSOWANYCH MATERIAŁÓW ORAZ DOBORU SYSTEMU OCIEPLENIA.

Temat opracowania:

Termomodernizacja i przebudowa budynku Przedszkola
Publicznego w kobżenicy; dz. nr 499, ul. Batorego 5,
89-310 Łobżenica

Temat rysunku:
Detal nr 4 - docieplenie nadproża przekrój pionowy
Inwestor: Gmina kobżenica ul. Sikorskiego 7, 89-310 kobżenica Projektował/Sprawdzaf: Opracował: mgrinż. Mateusz Dyrla Data:10.03 .2016

Inwestor:
ul. Sikorskiego 7, 89-310 Łobżenica

Temat rysunku: Detal nr 5 - docieplenie przy parapetach
Inwestor: Gmina Kobżenica ul. Sikorskiego 7, $89-310$ Kobżenica
Projektował/Sprawdzaf:
Opracował: mgr inż. Mateusz Dyrla
Data:
RYS. NR A-17

Wariant A - przy zastosowaniu sznura

 i kitu uszczelniającego

Wariant B - przy zastosowaniu profili dylatacyjnych
ZABEZPIECZENIE SZCZELINY DYLATACYJNEJ POWYŻEJ 2 m OD POZIOMU TERENU

UWAGA:
Z UWAGI NA ZASTOSOWANIE RÓŻNYCH MATERIAŁÓW ŚCIANY ZEWNETTRZNEJ ZALECA SIE PRZED PRZYSTAPIENIEM DO PRAC BUDOWLANYCH ODKRYWKI W RÓŻNYCH CZĘŚCIACH BUDYNKU W CELU JEDNOZNACZNEGO OKREŚLENIA ZATOSOWANYCH MATERIAŁÓW ORAZ DOBORU SYSTEMU OCIEPLENIA.
Temat opracowania:
Termomodernizacja i przebudowa budynku Przedszkola
Publicznego w Łobżenicy; dz. nr 499, ul. Batorego 5,

89-310 kobżenica

Temat rysunku:
Detal nr 6 - rozwiq̨anie dylatacji w ociepleniu
Inwestor: Gmina kobżenica ul. Sikorskiego 7, 89-310 Łobżenica
Projektował/Sprawdzat:
Opracował: mgr inż. Mateusz Dyrla
Data:
RYS. NR A-18

UWAGA:
Z UWAGI NA ZASTOSOWANIE RÓŻNYCH
MATERIAŁÓW ŚCIANY ZEWNĘTRZNEJ ZALECA SIĘ PRZED PRZYSTAPIENIEM DO PRAC BUDOWLANYCH ODKRYWKI W RÓŻNYCH CZESŚCIACH BUDYNKU W
CELU JEDNOZNACZNEGO OKREŚLENIA
ZATOSOWANYCH MATERIAŁÓW ORAZ DOBORU SYSTEMU OCIEPLENIA.

Temat opracowania:
Termomodernizacja i przebudowa budynku Przedszkola Publicznego w Łobżenicy; dz. nr 499, ul. Batorego 5, 89-310 Łobzenica

Temat rysunku:

Detal nr 7 - rozwiązanie docieplenia przyziemia

Inwestor:

Gmina kobżenica
ul. Sikorskiego 7, 89-310 Łobżenica
Projektował/Sprawdzał:

Opracował : mgr inż. Mateusz Dyrla

Data:

ZADASZENIE NAD WEJSCIEM GKÓWNYM
 szt. 1 Skala 1:50

UWAGA:

1. DOKLADNE WMMARY SPRAWOZIĆ Z NATURY

POPRZEZ BEZPOSREDNI POMIAR NA BUDOWE
2. KONSTRUKCuE GLOWNA ZADASZENIA MOCOWAĆ DO SCIAN ZEWNEIRZNYCH BUDYNKU.
3. ZABEZPIECZENE ANTYKOROZYNNE WG OPISU TECHNICZNEGO
4. ZADASZENIA NAD POZOSTAEYMI WEJSCIAMI WYKONAĆ ANALOGICZNIE

STAL St3S
 ELEKTRODY EA 146

ZADASZENIE NAD WEJSCIEM GLÓWNYM
 szt. 1 Skala 1:50

Papo wierzchnieso krucia

- Popo podkładowa kqczona mechanicznie
- Styropian gr. 10 cm ze spadkiem do rury spustowej
- Ptyta OSB gr. 25 mm
- Konstr. stalowa

Plyta OSB gr. 25 mm
Obróbka blacharska (na całej pow. od spodu)

UWAGA:

1. DOKLADNE WYMIARY SPRAWDZIC Z NATURY POPRZEZ BEZPOSREDNI POMIAR NA BUDOWIE
2. ZABEZPIECZENIE ANTYKOROZYJNE WG OPISU TECHNICZNEGO 3. KOTWY CHEMICZNE OSADZIC W WIENCU. W PRZYPADKU BRAKU WEŃCA POINFORMOWAĆ AUTORA OPRACOWANIA W CELU PRZEPROJEKTOWANIA POLACZENIA

STAL St3S ELEKTRODY EA 146

kołków rozporowych
$\frac{\text { Przekrój }}{1: 20} \mathrm{~A}-\mathrm{A}$
1:20

UWAGA:

1. Wypernienie balustrady z rur fi20
układzie pionowym w rozstawie co 12 cm
2. Pozostałe schody wykonać analogicznie.

Temat opracowania: dz. nil 499, ul. Batorego 5, 89-310 kobżenica

Temat ysurku:

Schody zewnetrzne
Gmino tobżenic
ul. Sikorskiego 7, 89-310 Lobżenico
ProiektowallSprawazit:

$$
\begin{aligned}
& \text { mgrinz. Mirostaw Mlynarek } \\
& \text { uprawhery budowlane } \\
& \text { on prejeptox dan PWOK/15 } \\
& \text { oo proterkowana ikicrowanin } \\
& \text { w specjarnosci konstrukcyino-budowfarej }
\end{aligned}
$$

Opracower: :mgr inz. Maleusz Dyta	
Data:	10.03.2016
RYS. NR K-03	SKALA 1:50

IX. OBLICZENIA

OBLICZENIA

POZ. 1.0 ZADASZENIA NAD WEJŚCLAMI

Projektuje się konstrukcje stalową zadaszeń nad wejściami w postaci belek stalowych. Wspornik zakotwiony w wieńcu zelbetowym na kotwy wklejane typu Hilti. Stal S235.

Zebranie obciq̨̇̇eńn $\mathbf{w} \mathrm{kN} / \mathrm{m}^{2}$:

Rodzaj obciqżenia	$\boldsymbol{g}_{\text {char }}$	γ	$\boldsymbol{g}_{\text {obl }}$
Obciążenie śniegiem 0,10*4,0	1,00	1,50	1,50
Papa wierzchniego krycia termozgrzewalna	0,064	1,20	0,077
Papa podkładowa mocowana mechanicznie	0,031	1,20	0,044
Styropian EPS100-038 kl. o gr. 10cm, $0,15 * 0,50$	0,05	1,30	0,065
Folia paroizolacyjna polietylenowa	0,015	1,20	0,018
Płyta OSB/3 gr.25mm 2*0,156	0,312	1,10	0,343
Styropian EPS100-038 kl. o gr. 10,0cm, $0,10 * 0,50$	0,05	1,30	0,05
Blacha stalowa	0,07	1,10	0,065
	$\mathbf{R A Z E M}$	$\mathbf{1 , 5 9}$	$\mathbf{1 , 3 6}$

Ciężar własny konstrukcji uwzględniono w programie obliczeniowym.

Poz. 1.1. Belka poprzeczna

Rozstaw belek co 70 cm

Długość obliczeniowa $L_{\text {eff }}=L \cdot 1,05=3,60 \cdot 1,05=3,78$
1.Zebranie obciążeńn na belkę:
$\mathrm{Q}_{\mathrm{k}}=1,59^{*} 0,7 \mathrm{~m}=1,11 \mathrm{kN} / \mathrm{m}, \quad \gamma_{\mathrm{f}}=1,36$
2. Obc. od człowieka
$\mathrm{P}=1,0 \mathrm{kN}$

SCHEMAT OBLICZENIOWY

OBCIĄŻENIA

WYNIKI
MOMENTY:

TNACE:

NORMALNE:

SIEY PRZEKROJOWE: T.I rzędu
Obciażenia obl.: Ciężar wł.+AB

Pret:	$x / L:$	$x[m]:$	$M[k N m]:$	$Q[k N]:$	$N[k N]:$
1	0,00	0,000	0,0	3,8	0,0

```
0,50 1,890 4,3* 0,7 0,0
1,00 3,780 0,0 -3,8
```


Pręt nr 1

Zadanie: zadaszenie_1
Przekrój: H 80x 80x 4

Wymiary przekroju:
H 80x 80x $4.5 \mathrm{~h}=80,0 \mathrm{~s}=80,0 \mathrm{~g}=4,5 \mathrm{t}=4,5 \mathrm{r}=4,5$.
Charakterystyka geometryczna przekroju:
$\mathrm{Jxg}=127,0 \quad \mathrm{Jyg}=127,0 \quad \mathrm{~A}=13,40 \quad \mathrm{ix}=3,1 \quad \mathrm{iy}=3,1$.
Materiał: St3SX,St3SY,St3S,St3V,St3W. Wytrzymałość fd=215 MPa dla g=4,5.

Przekrój spełnia warunki przekroju klasy 1.

Sily przekrojowe:

$\mathrm{xa}=1,890 ; \mathrm{xb}=1,890$.
Obciążenia działające w płaszczyźnie układu: AB

$$
\mathbf{M}_{\mathrm{x}}=-4,3 \mathrm{kNm}, \quad \mathrm{~V}_{\mathbf{y}}=-0,7 \mathrm{kN}, \quad \mathrm{~N}=0,0 \mathrm{kN},
$$

Naprężenia w skrajnych włóknach: $\sigma_{\mathrm{t}}=136,1 \mathrm{MPa} \sigma_{\mathrm{C}}=-136,1 \mathrm{MPa}$.

Nośność przekroju na zginanie:

$x a=1,890 ; x b=1,890$.

- względem osi X

$$
M_{\mathrm{R}}=\alpha_{\mathrm{p}} W f_{d}=1,000 \times 31,8 \times 215 \times 10^{-3}=6,8 \mathrm{kNm}
$$

Wspólczynnik zwichrzenia dla $\bar{\lambda}_{L}=0,000$ wynosi $\varphi_{L}=1,000$
Warunek nośności (54):

$$
\frac{M_{x}}{\varphi_{L} M_{R x}}=\frac{4,3}{1,000 \times 6,8}=0,633<1
$$

Stan graniczny użytkowania:

Ugięcia względem osi Y liczone od cięciwy pręta wynoszą:

$$
\begin{aligned}
& \mathrm{a}_{\max }=16,7 \mathrm{~mm} \\
& \mathrm{a}_{\mathrm{gr}}=l / 200=3780 / 200=18,9 \mathrm{~mm} \\
& \quad \mathrm{a}_{\max }=16,7<18,9=\mathrm{a}_{\mathrm{gr}}
\end{aligned}
$$

Poz. 1.2. Belka podłużna-główna

1.Reakcja z poz. 1.1. z poz. 1.1:
$\mathrm{Q}_{\mathrm{k}}=2,8 \mathrm{kN}, \quad \gamma_{\mathrm{f}}=1,37$

SCHEMAT OBLICZENIOWY

OBCIAZEENIA:

WYNIKI
MOMENTY:

TNACE:

NORMALNE:

SIEY PRZEKROJOWE:

T. I rzędu

Obciażenia obl.: Cięźar wł.+A

4	0,00	0,000	-0,0	0,0	-1,4
	1,00	0,220	0,0	0,0	-1,4
5	0,00	0,000	-0,0	0,0	0,0
	1,00	0,100	0,0	0,0	0,0

Prẹt nr 1

Zadanie: zadaszenie_2

Przekrój: H 100x100x 4.0

Wymiary przekroju:
H 100x100x $4.0 \quad h=100,0 \quad s=100,0 \quad g=4,0 \quad t=4,0 \quad r=4,0$.
Charakterystyka geometryczna przekroju:
$\mathrm{Jxg}=233,0 \quad \mathrm{Jyg}=233,0 \quad \mathrm{~A}=15,20 \quad \mathrm{ix}=3,9 \mathrm{iy}=3,9$.
Materiał: St3SX,St3SY,St3S,St3V,St3W. Wytrzymałość $\mathrm{fd}=\mathbf{2 1 5} \mathrm{MPa}$ dla $g=4,0$.

Przekrój spełnia warunki przekroju klasy 1.

Sily przekrojowe:

$x a=1,540 ; x b=0,000$.

Obciążenia działające w płaszczyźnie układu: A

$$
\mathbf{M}_{\mathbf{x}}=8,8 \mathrm{kNm}, \quad \mathbf{V}_{\mathbf{y}}=-\mathbf{1 1 , 1} \mathrm{kN}, \quad \mathrm{~N}=-0,0 \mathrm{kN},
$$

Naprężenia w skrajnych włóknach: $\sigma_{\mathrm{t}}=189,4 \mathrm{MPa} \sigma_{\mathrm{C}}=-189,4 \mathrm{MPa}$.

Nośność przekroju na zginanie:

$x a=1,540 ; x b=0,000$.

- względem osi X

$$
M_{\mathrm{R}}=\alpha_{\mathrm{p}} W f_{d}=1,000 \times 46,6 \times 215 \times 10^{-3}=10,0 \mathrm{kNm}
$$

Współczynnik zwichrzenia dla $\bar{\lambda}_{L}=0,000$ wynosi $\varphi_{L}=1,000$
Warunek nośności (54):

$$
\frac{M_{x}}{\varphi L M_{R x}}=\frac{8,8}{1,000 \times 10,0}=0,881<1
$$

Nośność przekroju na ścinanie:

$x a=1,540 ; x b=0,000$.

- wzdłuż osi Y

$$
\begin{aligned}
& V_{R}=0,58 A_{V} f_{d}=0,58 \times 7,7 \times 215 \times 10^{-1}=95,8 \mathrm{kN} \\
& V o=0,3 \quad V_{R}=28,7 \mathrm{kN}
\end{aligned}
$$

Warunek nośności dla ścinania wzdłuż osi Y:

$$
V=11,1<95,8=V_{R}
$$

Stan graniczny użytkowania:

Ugięcia względem osi Y liczone od cięciwy pręta wynoszą:

$$
\begin{aligned}
& \mathrm{a}_{\max }=1,5 \mathrm{~mm} \\
& \mathrm{a}_{\mathrm{gr}}=l / 150=1540 / 150=10,3 \mathrm{~mm} \\
& \quad \mathrm{a}_{\max }=1,5<10,3=\mathrm{a}_{\mathrm{gr}}
\end{aligned}
$$

POZ. 2.0 ZADASZENIE WSPORNIKOWE

Zestawienie obciążeń jak w Poz. 1.0.

Rozstaw belek co 67 cm
1.Zebranie obciążeń na belkę:
$\mathrm{Q}_{\mathrm{k}}=1,59 * 0,67 \mathrm{~m}=1,07 \mathrm{kN} / \mathrm{m}, \quad \gamma_{\mathrm{f}}=1,36$

1.840

MOMENTY:

TNACE:

NORMALNE:

SIEY PRZEKROJOWE: T.I rzędu
Obciażenia obl.: Cięzar wł.+A

Pret:	$x / L:$	$x[m]:$	$M[k N m]:$	$Q[\mathrm{kN}]:$	$N[k N]:$
1	0,00	0,000	$-2,8$	3,0	$-0,0$
	1,00	1,840	0,0	0,0	$-0,0$

$20,00 \quad 0,000$
1,00 0,330
0,0
-0,0
$-0,0 \quad-0,0 \quad-0,0$

* = Wartości ekstremalne

Pręt nr 1

Zadanie: nowe
Przekrój: H 100x100x 4.0

Wymiary przekroju:
H 100x100x $4.0 \quad \mathrm{~h}=100,0 \mathrm{~s}=100,0 \mathrm{~g}=4,0 \quad \mathrm{t}=4,0 \quad \mathrm{r}=4,0$.
Charakterystyka geometryczna przekroju:
$\mathrm{Jxg}=233,0 \quad \mathrm{Jyg}=233,0 \quad \mathrm{~A}=15,20 \quad \mathrm{ix}=3,9 \quad \mathrm{iy}=3,9$.
Materiał: St3SX,St3SY,St3S,St3V,St3W. Wytrzymałość $\mathbf{f d}=\mathbf{2 1 5} \mathrm{MPa}$ dla $\mathbf{g}=\mathbf{4 , 0}$.

Przekrój spełnia warunki przekroju klasy 1.

Nośność przekroju na zginanie:

$x a=0,000 ; x b=1,840$.

- względem osi X

$$
M_{\mathrm{R}}=\alpha_{\mathrm{p}} W f_{d}=1,000 \times 46,6 \times 215 \times 10^{-3}=10,0 \mathrm{kNm}
$$

Współczynnik zwichrzenia dla $\bar{\lambda}_{L}=0,000$ wynosi $\varphi_{L}=1,000$ Warunek nośności (54):

$$
\frac{M_{x}}{\varphi_{L} M_{R x}}=\frac{2,8}{1,000 \times 10,0}=0,276<1
$$

Stan graniczny użytkowania:

Ugięcia względem osi Y liczone od cięciwy pręta wynoszą:

$$
\begin{aligned}
& \mathrm{a}_{\max }=0,6 \mathrm{~mm} \\
& \mathrm{a}_{\mathrm{gr}}=l / 250=1840 / 250=7,4 \mathrm{~mm} \\
& \quad \mathrm{a}_{\max }=0,6<7,4=\mathrm{a}_{\mathrm{gr}}
\end{aligned}
$$

mgr inż. Mirosław Młynarek uprawn fenia budowlane ni KUR/ad 1/PWOK/15
do projekt pyania i kierowania robotami budondarymi bez ograniczeń w specjalności konstrukcyino-budowlanej

X. PROJEKT INSTALAC.JI SANITARANYCH

SPIS TREŚCI

1. Spis treści 1
2. Przedmiot inwestycji 2
3. Materiały wyjściowe 2
4. Opis stanu istniejącego 2
5. Opis przyjętych rozwiązań i obliczenia 3
5.1. Zapotrzebowanie ciepła 3
5.1.1. Zakres robót związanych z modernizacją systemu grzewczego 3
5.1.2. Zawory regulacyjne podpionowe i przygrzejnikowe 3
5.1.3. Regulacja instalacji C.O. 4
5.2. Wentylacja mechaniczna kuchni 4
5.3. Ciepła woda użytkowa 5
6. Informacje dotyczące bezpieczeństwa i ochrony zdrowia 7
7. Oświadczenie projektanta 8

1 Przedmiot inwestycui

Celem opracowania jest wykonanie dokumentacji projektowej aktualizacji regulacji stałej instalacji centralnego ogrzewania poprzez nastawy wstępne na zaworach grzejnikowych, instalacje zaworów podpionowych dla istniejącego budynku, projektu wentylacji mechanicznej kuchni oraz instalacji c.w.u. przy zastosowaniu pomp ciepła dla budynku Przedszkola Publicznego w Łobżenicy. Dokumentacja projektowa wykonana została w oparciu o przedstawiony audyt energetyczny.

2 Materialy wyjściowe

- Audyt Energetyczny budynku Przedszkola Publicznego, ul. Stefana Batorego 5, Łobżenica, sporządzony przez Energo Expert Mariusz Woźniak Racławówka 45e, 36-047 Racławówka.
- inwentaryzacja,
- uzgodnienia z Inwestorem,
- Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. 02.75.690 z późn. zmianami),
- inne aktualnie obowiązujące przepisy, normy i dane techniczne urządzeń,
- wizja terenowa.

3 Opis stanu istniejącego

Budynek Przedszkola Publicznego w Łobżenicy posiada wewnętrzną instalację c.o. wykonaną z rur stalowych czarnych, w układzie dwururowym z rozdziałem dolnym o wymuszonym obiegu wody. Elementem grzejnym są żeliwne grzejniki członowe oraz grzejniki typu Favier. Źródłem ciepła jest kotłownia gazowa z kotłem o mocy 630 kW zlokalizowana w budynku Gimnazjum. Parametry pracy instalacji $70 / 55^{\circ} \mathrm{C}$. W kotłowni znajduje się automatyczny regulator pogodowy. Pod budynkiem przedszkola znajduja się kanały dla instalacji c.o. Podczas prowadzenia prac inwentaryzacyjnych nie było możliwości wykonania inwentaryzacji rur zbiorczych znajdujących się w kanałach pod posadzka.

Wszelkie nazwy firmowe wyrobów i materiałów określone w dokumentacji projektowej należy traktować jedynie jako marki referencyjne nie stanowiące przeszkody dla Oferenta w doborze urządzeń i materiałów innych producentów, z zastrzeżeniem uzyskania w efekcie założonych przez projektanta parametrów technicznych instalacji i nie niższego od zalożonego standardu technicznego i jakościowego inwestycji.

4 OPIS PRZYJETYCH ROZWIĄZAŃ I OBLICZENIA

Projekt oparto o założenia projektowe przedstawione w wykonanym Audycie Energetycznym.
Powyższy audyt zakłada:

- płukanie chemiczne instalacji,
- montaż termostatycznych zaworów przygrzejnikowych,
- regulację hydrauliczną instalacji c.o. poprzez nastawy wstępne zaworów grzejnikowych i sekcyjnych,
- wykonanie projektu wentylacji mechanicznej z odzyskiem ciepła w pomieszczeniu kuchni,
- projekt instalacji c.w.u. przy wykorzystaniu pomp ciepła.

5. ZAPOTRZEBOWANIE CIEPLA

Obliczeniowe zapotrzebowanie na ciepło 151 kW .
Obliczenia wykonano przy założeniu:

- obliczeniowa temperatura zewnętrzna dla I strefy klimatycznej: - $18^{\circ} \mathrm{C}$,
- temperatury wewnętrzne pomieszczeń: pomieszczenia przeznaczone na stały pobyt ludzi bez okryć zewnẹtrznych $+20^{\circ} \mathrm{C}$, magazyny nie wymagające stałej obsługi, pomieszczenia piwniczne $+12^{\circ} \mathrm{C}$,
- liczba wymian powietrza - zgodnie z audytem energetycznym,
- współczynniki przenikania ciepła zgodnie z Audytem Energetycznym.

5.1 Zakres robót związanych $\quad \mathrm{Z}$ modernizacją systemu GRZEWCZEGO

- montaż zaworów regulacyjnych podpionowych ,
- montaż termostatycznych zaworów przygrzejnikowych,
- płukanie chemiczne instalacji,
- regulacja instalacji c.o. poprzez nastawy wstępne na termostatycznych zaworach grzejnikowych oraz zaworach regulacyjnych,

5.1.2 ZAWORY REGULACYJNE PODPIONOWE I PRZYGRZEJNIKOWE.

W obiekcie przewiduje się montaż zaworów regulacyjnych sekcyjnych i podpionowych firmy Danfoss. Miejsce montażu zaworów zaznaczono na rozwinięciu instalacji.

Zestawienie ilości i rodzaju zaworów.

Lp	nazwa	ilość
1	zawór podpionowy ASV-PV 20-40 kPa DN50	1
2	zawór podpionowy ASV-PV 20-60 kPa DN40	2
3	zawór podpionowy ASV-PV 5-25kPa DN15	1
4	zawór podpionowy ASV-M DN50	1
5	zawór podpionowy ASV-M DN40	2
6	zawór podpionowy ASV-M DN15	1
7	zawór RA-N prosty DN15	151
8	zawór RA-N kątowy DN15	4
9	zawór RA-N prosty DN20	1
10	zawór odcinajacy RLV S prosty DN15	151
11	zawór odcinajacy RLV S katowy DN15	4
12	zawór odcinajacy RLV S prosty DN20	1
13	pompa Magna3 40-100F H=63,5 V=4,253m3/h	1

5.1.3. Regulacia istniejacej instalacu co

Regulacje instalacji centralnego ogrzewania oparto zgodnie z Audytem Energetycznym o istniejacy układ instalacji c.o. Instalacja c.o. wykonana jest z rur stalowych i grzejników członowych. Grzejniki wyposażyć w termostatyczne zawory grzejnikowe.

Obliczeń hydraulicznych instalacji i jej regulacji dokonano na podstawie istniejaçych parametrów pracy instalacji tj. temperatura wewnątrz pomieszczeń $+20^{\circ} \mathrm{C}$, parametry pracy instalacji $70 / 55^{\circ} \mathrm{C}$.

Wyniki nastaw poszczególnych termostatycznych zaworów grzejnikowych przedstawiono na rzucie instalacji c.o.

Praca instalacji c.o. odbywać się będzie poprzez system automatycznej regulacji czasowej zainstalowanej w pomieszczeniu kotlowni. Maksymalna dopuszczalna temperatura obniżenia $4^{\circ} \mathrm{C}$ poniżej temperatury obliczeniowej.

5.2 Wentylacja mechaniczna kuchni

Wentylacja zaplecza kuchennego składa się z układu wentylacji mechanicznej nawiewnej, zapewniającej dostarczenie odpowiedniej ilości powietrza zewnętrznego wynikającej z wymogów higieniczno - sanitarnych. Sprawność zaprojektowanej wentylacji mechanicznej min 54%, moc grzewcza nagrzewnicy 24 kW , parametry urządzenia niegorsze od przykładowej podanej firmy VentusVS-30R-GH.
Z pomieszczeń powietrze wywiewane jest układami wywiewnymi umożliwiającymi usuniecie powietrza zużytego $\mathrm{wg} \mathrm{w} / \mathrm{w}$ założeń.
Pomieszczenia wentylowane są przez wydzielony układ. Centrala nawiewna zlokalizowana jest na dachu budynku. Powietrze czerpane jest do centrali z poziomu dachu przez czerpnie. Wyrzut powietrza wywiewanego z pomieszczenia zlokalizowany jest na dachu. Powietrze z kuchni wywiewane jest przez okap kuchenny układem wentylacyjnym (JLI-R-FF-4200x2600x540-3-315$3060 \mathrm{~m} 3 / \mathrm{h}$). Układ należy wyposażyć w thumiki akustyczne zapewniające spełnienie wymaganych kryteriów akustycznych. Centrala wentylacyjna wyposażona jest w wymiennik glikolowy (odzysk ciepła z powietrza wywiewanego z okapu), nagrzewnicę elektryczna.
Moduł odzysku glikolowego na instalacji wywiewnej z okapu kuchennego należy dostarczyć w komplecie z centrala wentylacyjna - komplet ma zawierać wymienniki, układ hydrauliczny z modułem pompowym i wymaganymi zabezpieczeniami, niezbędną armaturę regulacyjno-odcinająca oraz automatykę spiętą z układem nawiewnym i wywiewnym.
Powietrze do pomieszczeń doprowadzane jest siecią kanałów wentylacyjnych prostokatnych klasy A oraz okragłych z blachy stalowej ocynkowanej wykonanych w technologii "SPIRO".
Powietrze z nad okapu odprowadzane jest kanałami ze stali nierdzewnej. Instalację należy ułożyć ze spadkiem umożliwiającym spust po phukaniu do otworów rewizyjnych. Kanały wykonać w technologii zapewniającej maksymalna gładkość powierzchni wewnętrznych oraz połaczzeń.
W pomieszczeniu kuchni wentylacja ma pracować z minimalną wydajnością np. 30% maksymalnego wydatku - wywiew przez okap. W przypadku uruchomienia technologii kuchni (wzrost zysków ciepła) wydajność wentylatora wywiewnego obstugujacego okap zwiększa się w funkcji temperatury w pomieszczeniu lub
poprzez ręczne zwiększanie wydajności. Wraz ze wzrostem ilości powietrza wywiewanego centrala nawiewna zwiększa ilość powietrza nawiewanego. W związku ze zmiana wydajności - ilości powietrza wentylujacego pomieszczenie kuchni należy przewidzieć jeden regulator stałego wydatku z thumikiem akustycznym lub odejścia do poszczególnych nawiewników wyposażyć w regulatory np. typu VFL (zamiast przepustnic regulacyjnych).

Centrala wentylacyjna

Podstawowe elementy centrali wentylacyjnej nawiewnej:

- Przepustnica na pow. świeżym,
- Filtry,
- Wymiennik glikolowy,
- Nagrzewnica elektryczna,
- Wentylator,

Uklad wywiewny WA6

Podstawowe elementy układu wywiewnego:

- Filtry,
- Wymiennik glikolowy,
- Przepustnica na wyrzucie,

Automatyka centrali realizuje następujace zadania:

- Uruchomienie i zatrzymanie centrali,
- Sterowanie wydajnością centrali,
- Regulacja temperatury nawiewu,
- Odzysk ciepła,
- Monitoring alarmów,
- Monitoring filtrów,
- Zabezpieczenie wymienników i wentylatorów,
- Komunikacja z systemem BMS (opcja).

5.3. Ciepla woda użytkowa

Ciepła woda użytkowa przygotowywana będzie w dwóch zasobnikach o pojemności 5001 każdy. Dodatkowo zasobniki muszą posiadać trzy wężownice oraz grzałkę elektryczna. Zasobniki zostają wpięte w układ pomp ciepła do przygotowania ciepłej wody użytkowej. Każda z pomp o mocy około 5 kW . W okresie letnim woda przygotowywana będzie za pomoca pracy pomp ciepła. W okresie przejściowym oraz zimowym zasobniki zostają wpięte w układ C.O. W momencie zwiększonego zapotrzebowania na c.w.u. Do pomocy do przygotowania ciepłej wody zostaja załązone grzałki elektryczne. Dla zwiększenia efektywności podgrzewu c.w. zostaje zamontowany wymiennik płytowy o powierzchni $1,2 \mathrm{~m}^{2}$. Aby zabezpieczyć ciepła wodę przed wychłodzeniem montuje się zawór elektromagnetyczny połączony z termostatem na instalacji C.O. przy rozdzielaczu. Otwarcie zaworu nastepuje w momencie uzyskania temperatury $50^{\circ} \mathrm{C}$ na instalacji C.O. przychodzacej z kotlowni. Dla instalacji przewidziano pompę cyrkulacyjną o wysokości podnoszenia 6 m i średnicy DN25. Pompa wykonana z brazu lub stali nierdzewnej. Dla zabezpieczenia instalacji c.w.u. przewidziano naczynia przeponowe o poj. 35L dla każdego ze zbiorników wraz z zaworem bezpieczeństwa 6 bar DN15.

Instalacja od pomp ciepła do wymiennika oraz do zasobników c.w.u. napełniona glikolem o stężeniu 30%. Dla instalacji przewidziano naczynie przeponowe dla instalacji glikolowych o pojemności 251 oraz zawór
bezpieczeństwa przy każdej z pomp (3bary DN15). W instalacji przewidziano pompę obiegową o wysokości podnoszenia 8 m i średnicy DN32 przeznaczona do stosowania w instalacjach glikolowych. Do doprowadzenia i odprowadzenia powietrza przewiduje się kanały typu SPIRO o średnicy 315 a wyjście/ wejście z pompy o średnicy 200

Pojemność magazynowa 1429
Max. ciśnienie pracy zbiornika MPa 1,0
Max. ciśnienie wężownicy MPa 1,6
Pow. wymiennika nr 1 m 2 2,0
Pow. wymiennika pod dodatkowe źródło m2 1,0
Pow. wymiennika do c.o. m2 1,1
Zapotrzebowanie na wodę grzewczą z kotła c.o. $\mathrm{m}^{3} / \mathrm{h} 3,0$
L mm 1850
D mm 700
d mm 600
Waga netto (w twardej piance poiuretanowej) kg 233

6. INFORMACJA DOTYCZĄCA BEZPIECZEŃSTWA I OCHRONY ZDROWIA

6.1 Zakres robót dla całego zamierzenia budowlanego oraz kolejność realizacji poszczególnych obiektów. Zakresem swoim projektowane zamierzenie budowlane obejmuje wykonanie:

- prace wewnętrzne w budynku w zakresie instalacji c.o.

Inwestycja obejmuje również realizację wszystkich innych kolejnych czynności związanych z tym tematem między innymi, próby szczelności, odbiory.
6.2 Przewidywane zagrożenia występujące podczas realizacji robót budowlanych, określające skalę i rodzaje zagrożeń oraz miejsce i czas ich wystapienia
Do ewentualnie przewidywanych zagrożeń w obrębie inwestycji zaliczyć można:

- możliwość powstania zagrożenia pożarowego i wybuchowego w czasie montażu instalacji,
- możliwość upadku podczas prac montażowych,
- możliwość uszkodzenia ciała związana z upadkiem sprzętu/materiału,
- możliwość porażenia prądem podczas używania elektronarzędzi,
- urazy oczu: mechaniczne, chemiczne i termiczne,
- stłuczenia i skaleczenia rąk i nóg podczas przenoszenia materiału/sprzętu.
6.3 Sposób prowadzenia instruktażu pracowników przed przystapieniem do realizacji robót szczególnie niebezpiecznych
- okresowe szkolenia z zakresu przepisów BHP
- szkolenie wstępne z zakresu BHP
- szkolenie na stanowisku pracy przed przystąpieniem do robót, zgodnie z:
- Rozporządzeniem Ministra Infrastruktury z dnia 6 lutego 2003r. w sprawie bezpieczeństwa i higieny pracy podczas wykonywania robót budowlanych (Dz.U.2003.Nr 47.poz.401)
- Rozporządzenie Ministra Pracy i Polityki Socjalnej z dnia 26 września 1997 r. w sprawie ogólnych przepisów bezpieczeństwa i higieny pracy (Dz.U.nr 129.poz. 844 ze zm.)
- Rozporządzenie Ministra Pracy i Polityki Socjalnej z dnia 26 września 1996 r. w sprawie rodzajów prac, które powinny być wykonywane co najmniej przez dwie osoby (Dz.U.nr 62.poz 288.)
6.4 Środki techniczne i organizacyjne, zapobiegajace niebezpieczeństwom wynikającym z wykonywania robót budowlanych w strefach szczególnego zagrożenia zdrowia lub w ich sąsiedztwie, w tym zapewniających bezpieczną i sprawną komunikację, umożliwiającą szybką ewakuację na wypadek pożaru, awarii i innych zagrożeń
- środki techniczne i organizacyjne zapobiegajace niebezpieczeństwom
- szkolenia BHP
- środki ochrony indywidualnej
- stały nadzór nad wykonywanymi robotami
- oznakowanie placu budowy
- zasady postępowania w przypadku wystapienia zagrożenia
- przerwanie pracy
- udzielenie pierwszej pomocy jeśli zachodzi potrzeba
- powiadomienie kierownika budowy
- wezwanie pogotowia ratunkowego, jeśli zachodzi potrzeba również służb specjalistycznych (Straż, Elektrownia, Gazownia, Policja)
- wezwanie Inspektora Nadzoru Budowlanego oraz Powiatowego Inspektora Pracy
- środki ochrony indywidualnej:
- rękawice robocze
- odzież robocza
- buty robocze
- kaski ochronne z atestem
- okulary ochronne (podczas pracy z elektronarzędziami)
- zasady nadzoru nad robotami szczególnie niebezpiecznymi:
- roboty wykonywane pod nadzorem bezpośredniego przełożonego
- roboty wykonywane pod nadzorem kierownika budowy lub kierownika robót.

"

XI. PROJEKT INSTALACJI ELEKTRYCZNYCH

1. Zalożenia projektowe do projektu instalacji elektrycznej przy termomodernizacji budynku Przedszkola w Łobżenicy

2. Podstawa opracowania

- Zlecenie inwestora
- Podkład architektoniczny w skali 1:100
- Obowiązujące przepisy i normy

3. Przedmiot opracowania

Przedmiotem opracowania są instalacje elektryczne w budynku Przedszkola w Łobżenicy.

4. Zakres projektu

- instalacja oświetlenia wewnętrznego i zewnętrznego
- instalacja ochrony przepięciowej
- instalacja połączeń wyrównawczych i ochrony przeciwporażeniowej.
- instalacja odgromowa
- instalacja fotowoltaiczna

5. Opis techniczny

5.1. Zasilanie i pomiar energii elektrycznej

Zasilanie budynku odbywa się poprzez istniejące przyłącze elektroenergetyczne kablowe zakończone złączem ZK-3. Zabezpieczenie główne oraz układ pomiarowy zlokalizowane są w RG.

5.2. Wewnętrzna linia zasilająca

Z istniejącego złącza kablowego wyprowadzony jest WLZ-t do rozdzielnicy RG zlokalizowanej w budynku przedszkola o następującym przekroju:

- ZK-3 kierunek RG przewodem YAKY $4 \times 120 \mathrm{~mm}^{2}$

5.3 Rozdzielnice $0,4 \mathrm{kV}$

5.3.1. Rozdzielnica główna RG

Istniejąca RG bez zmian.

5.4. Instalacja odbiorcza

5.4.1. Instalacja oświetlenia podstawowego

Przy obliczeniach technicznych przyjęto następujące wymagania natężenia oświetlenia podstawowego:

- sala zajęć 500lx
- sala gimnastyczna 3001x
- pomieszczenia technologiczne 150lx
- warsztat konserwatora 3001x
- pomieszczenia socjalne, korytarze 1001x
- szatnie, pomieszczenia sanitarne 200lx
- klatki schodowe 150lx

Przyjęto poziomy natężenia oświetlenia zgodnie z PN-EN 12464-1.
Modernizowaną instalację oświetlenia podstawowego należy wykonać przewodami kabelkowymi typu YDY o przekroju $2,5 \mathrm{~mm}^{2}, 1,5 \mathrm{~mm}^{2}$ i izolacji 750 V .

- Pomieszczenia techniczne, magazynu, kotlowni

W pomieszczeniach technicznych, magazynkach, kotłowni projektuje się oprawy dostosowane do zabudowy świetlówek LED o IP 65 z kloszem wyposażone w źródło światła LED.

- Sale zajęć szkolnych

W salach zajęć szkolnych należy zamontować oprawy natynkowe dostosowane do zabudowy świetlówek LED o IP 44 z kloszem wyposażone w źródło światła LED.

- zaplecze socjalne, pokoje administracji

W pomieszczeniach należy zamontować oprawy natynkowe dostosowane do zabudowy świetlówek LED o IP 44 z kloszem wyposażone w źródło światła LED.

- korytarze i klatka schodowa
- W pomieszczeniach należy zamontować oprawy natynkowe dostosowane do zabudowy świetlówek LED o IP 44 z kloszem wyposażone w źródło światła LED.
Załączanie oświetlenia pozostaje bez zmian.

Szczegóły wykonawcze instalacji odbiorczej - wg załączonych schematów zasadniczych. Obliczenia natężenia oświetlenia przeprowadzono na przykładowych oprawach, których typ może zostać zmieniony. Należy jednak zachować zaprojektowane parametry oświetlenia pomieszczeń.

5.4.2. Oświetlenie zewnętrzne

Na zewnątrz zainstalowane będą oprawy LED oświetlające wejścia do budynku. Załączanie oświetlenia bez zmian.

5.4.3. Oświetlenie awaryjne i ewakuacyjne

W oświetleniu awaryjnym i ewakuacyjnym zastosowano oprawy np. typu LED MULTIOMEGA o mocy 9W i NESO o mocy 3W.

Oświetlenie drogi ewakuacyjnej musi obejmować drogi ewakuacyjne w budynku oraz w celu ułatwienia rozproszenia się w miejscu bezpiecznym również na zewnątrz budynku przy wyjściach ewakuacyjnych. Natężenie oświetlenia na drogach ewakuacyjnych musi być powyżej 1 lx. Drogi ewakuacyjne muszą być wyposażone w podświetlane znaki kierunkowe pracujące w trybie jasnym, widoczne nawet przy oświetleniu normalnym. Znaki muszą być umieszczone na wszystkich zakrętach, przejściach.

Natężenie oświetlenia ewakuacyjnego w pobliżu hydrantów musi być powyżej 5 lx.
Oświetlenie ewakuacyjne zrealizować przy pomocy typowych opraw oświetleniowych wyposażonych w bezobsługowe akumulatory niklowo-kadmowe włączające się automatycznie w
razie zaniku napięcia. Czas działania oświetlenia awaryjnego nie może być krótszy niż czasu istniejącego w budynku tj. 1 godziny.

Oświetlenie awaryjne strefy otwartej zapobiegającego panice o natężeniu 0,5 lx zrealizowano przy pomocy typowych opraw oświetleniowych wyposażonych w bezobsługowe akumulatory niklowo-kadmowe włączające automatycznie lampę w razie przerwy w dopływie prądu elektrycznego. Czas działania oświetlenia awaryjnego dostosowany do czasu istniejącego w budynku tj. 1 godziny.
Stosowane w instalacji zasilającej instalację awaryjnego oświetlenia ewakuacyjnego przewody typu HDGs wraz zamocowaniami muszą zapewniać odporność na oddziaływanie ognia w odpowiednio długim czasie lecz nie krótszą niż 90 min .

Oprawy oświetlenia awaryjnego powinny być oznaczone żóltym pasem o szerokości 2 cm , a puszki rozgałęźne powinny być pomalowane wewnątrz żółtą farbą. Instalację należy wykonać przewodem kabelkowym typu HDGs $2,5 \mathrm{~mm}^{2}$. Obwody sterownicze przewodem kabelkowym typu HDGs $2 \mathrm{x} 1,5 \mathrm{~mm}^{2}$.
W czasie normalnej pracy oprawy nie stanowią oświetlenia podstawowego.
Osprzęt bakelitowy wtynkowy. Cała instalacja wykonana przewodami miedzianymi w powłoce z polwinitu typu HDGs. Oświetlenie załączane będzie z rozdzielnicy głównej.

Zgodnie z zaleceniem Producenta, co trzy lata należy wymieniać akumulatory w lampach oświetlenia ewakuacyjnego.

5.4.6 Instalacja fotowoltaiki

Na dachu budynku od strony południowej projektuje się montaż 56 szt. paneli fotowoltaicznych o mocy 270 Wp . Łączna moc zainstalowanych paneli wynosi 15120 Wp . Do montażu paneli na dachu zastosowane zostanie systemowe rozwiązanie pozwalające na montaż paneli pod właściwym kątem bez konieczności przytwierdzania do powierzchni dachu.

Panele fotowoltaiczne współpracować będą z inwerterem o mocy 15 kVA umożliwiający podłączenie projektowanych paneli z siecią elektroenergetyczną. Inwerter zamontowany zostanie w pomieszczeniu technicznym. Zastosowany inwerter musi spełniać wymagania stawiane przez Spółkę Dystrybucyjną. W układzie należy zamontować układ pomiarowy rejestrujący ilość energii wyprodukowanej przez panele fotowoltaiczne.

5.4.6.1 Panele fotowoltaiczne

Instalacja składać się będzie z paneli fotowoltaicznych monokrystalicznych o mocy szczytowej $\mathrm{P}_{\mathrm{mpp}}=270 \mathrm{~W}$. Parametry pojedynczego panelu podano w warunkach STC tzn. natężenie nasłonecznienia $1000 \mathrm{~W} / \mathrm{m}^{2}$, temperatura ogniwa $25^{\circ} \mathrm{C}, \mathrm{AM} 1,5$. Wymiary zastosowanych paneli wynoszą 1640x1000x35. Parametry elektryczne zastosowanych paneli przedstawia poniższa tabela.

Moc maksymalna	Pmpp $=270 \mathrm{~W}$
Napięcie przy Pmpp	Vmpp $=31,5 \mathrm{~V}$
Prąd przy Pmpp	Impp $=8,58 \mathrm{~A}$
Prąd zwarciowy Isc	$9,17 \mathrm{~A}$
Napięcie jałowe Voc	$38,5 \mathrm{~V}$
Maksymalne napięcie pracy	1000 V
Współczynnik sprawności modułu Stopién ochrony gniazd przyłączeniowych	$16,5 \%$
IP 67	

5.4.6.2 Inwerter

Urządzeniem pozwalającym przetworzyć wytworzony przez panele będzie inwerter o mocy 15 kVA . Inwerter należy umieścić w pomieszczeniu RG. W celu połączenia Rozdzielnicy inwertera zzRG należy wykorzystać rezerwowe pole.

Minimalne parametry inwertera przedstawia poniższa tabela.

Moc maksymalna	PV $=15200 \mathrm{~W}$
Maksymalne napięcie DC	900 V
Zakres napięcia MPPT	$350 \ldots 720 \mathrm{~V}$

Ilość niezależnych wejść	$2+2$
Prąd maksymalny	$2 \times 21 \mathrm{~A}$
Sprawność EU	$98,6 \%$
Stopien ochrony	IP 66

5.4.6.3 Polączenia elektryczne

Połączenia między panelami oraz paneli z inwerterem projektuje się wykonać za pomocą przewodów dedykowanych instalacjom fotowoltaicznym o przekroju $6 \mathrm{~mm}^{2}$. Zakończenie przewodów dokonać poprzez wtyczki MC4., odpowiednio żeńska dla bieguna ujemnego, męska dla bieguna dodatniego. Na końcach przewodów od grupy paneli do inwertera umieścić odpowiednie oznaczniki kablowe. Kable między panelami prowadzone osłonięte zostaną za pomocą rur osłonowych lub korytek kablowych. Zastosowane rury osłonowe lub korytka kablowe będą odporne na promieniowanie UV.

5.4.6.4 Konstrukcje wsporcze

W celu zamontowania paneli fotowoltaicznych na dachu projektuję się zastosowanie systemu montażowego pod bloczki betonowe z profilami pod trójkąty - z osłonami bocznymi i tylnymi - 2 rzędy poziomo.

Materiały konstrukcyjne: aluminium
Kąt nachylenia: 30°
Układ paneli: poziomo
Obciążenie dla jednego panela: 45 kg
Całkowita waga systemu montażowego z panelami: $23,5 \mathrm{~kg} / \mathrm{m}^{2}$

W skład systemu wchodzą poniższe elementy:

- szyna montażowa
- wpust przesuwny
- klema końcowa dociskająca panel PV
- klema środkowa dociskająca panel PV
- trójkąt montażowy 30 stopni
- szyny aluminiowe pod trójkąty
- osłony boczne
- osłony tylne

5.4.6.5 Projektowany uzysk

Poniżej przedstawiono wyliczenie projektowanego uzysku z instalacji fotowoltaicznej:

$$
\text { Erzeczywista }[\mathrm{kWh}]=\frac{\text { Nasłonecznienie }\left[\frac{k W h}{m^{2}}\right] * \text { wspKor } * \text { Moc modułów }[\mathrm{kW}] * \mathrm{WW}}{\text { NAt prom. }(\mathrm{STC}) 1\left[\frac{k W h}{m^{2}}\right]}
$$

Zgodnie przeprowadzonymi obliczeniami projektowany uzysk energii wynosi 14137 kWh

5.5. Ochrona od porażeń

Ochronę przed dotykiem bezpośrednim (ochrona podstawowa) stanowi izolacja robocza przewodów i kabli oraz osłony zewnętrzne urządzeń. Zgodnie z normą PN-IEC-60364 jako Srodek dodatkowej ochrony przeciwporażeniowej zastosować samoczynne wyłączenie zasilania realizowane przez zabezpieczenia przetężeniowe dla urządzeń rozdzielczych, a dla obwodów rozdzielczych zabezpieczenia przetężeniowe oraz wyłączniki różnicowo-prądowe o $\Delta \mathrm{I}_{\mathrm{n}}=30 \mathrm{~mA}$. Po wykonaniu instalacji należy wykonać, potwierdzone protokolarnie, pomiary skuteczności przyjętej ochrony od porażeń.

Sieć zasilająca pracuje w układzie TN-C, projektowana instalacja w układzie TN-S. Rozdzielenie przewodu PEN na N i PE wykonać w RG, które dodatkowo uziemić. Wszystkie metalowe części elektrycznych urządzeń będą uziemione poprzez podłączenie ich do sieci uziemiającej. Dodatkowo wszystkie metalowe przewodzące konstrukcje są ze sobą trwale połączone dla wyrównania potencjałów.

Warunek zachowania ochrony przeciwporażeniowej z zastosowaniem
wyłączników różnicowoprądowych

$$
\mathrm{Ra} \leq 25 \mathrm{~V} / \mathrm{Ia}
$$

gdzie: Ia- prąd zapewniający samoczynne zadziałanie urządzenia ochronnego różnicowoprądowego Ra- suma rezystancji uziemienia i przewodów

ochronnych

Zastosowano wyłączniki różnicowoprądowe serii P304, P302 I=0,03A

$$
\begin{gathered}
\mathrm{Ra} \leq 25 \mathrm{~V} / 0,03 \mathrm{~A}=833 \Omega \\
\text {-zalecane } \mathrm{Ra}<200 \Omega
\end{gathered}
$$

5.6. Ochrona od przepięć atmosferycznych

Ochrona przepięciowa realizowana będzie jako dwustopniowa. W rozdzielnicy głównej za zabezpieczeniem w kierunku instalacji odbiorczej zainstalować ograniczniki kombinowane w przewodach fazowych - układ sieci TN-S. Ochrona urządzeń i systemów szczególnie wrażliwych na oddziaływanie przepięć i ważnych z punktu widzenia użytkownika, ze względu na straty jakie może przynieść ich uszkodzenie lub przestój (takie jak serwery, stanowiska komputerowe, kamery, centralki alarmowe, urządzenia kontroli dostępu, instalacja nagłaśniająca) wymaga zastosowania trzeciego stopnia ochrony. Urządzenia - ograniczniki przepięć typu 3 zabudować w rozdzielni zasilającej urządzenia teletechniczne.

5.7. Polączenia wyrównawcze

W obiekcie budowlanym należy wykonać główną szynę wyrównawczą i połączenia wyrównawcze główne. Szynę zainstalować w tablicy RG. Połączenia wyrównawcze powinny łączyć ze sobą następujące części przewodzące:

- główny przewód ochronny
- główną szynę uziemiającą
- rury zasilające instalacje wewnętrzne (np wody, gazu)
- metalowe elementy konstrukcyjne, urządzenia centralnego ogrzewania, systemy klimatyzacyjne jeżeli takie występują

Całość uziemić łącząc z uziomem instalacji odgromowej. Lokalne połączenia wyrównawcze należy wykonać w pomieszczeniach wyposażonych w basen natryskowy, brodzik, wannę. Wykonać przy użyciu przewodu LgY $10 \mathrm{~mm}^{2}$.

5.8. Instalacja odgromowa.

Na budynku szkoły wykonać instalację odgromową. Zgodnie z przeprowadzoną oceną ryzyka, instalacja odgromowa musi spełniać wymaganie stawiane IV klasie LPS. Należy
wykorzystać istniejący uziom otokowy. W miejscach wskazanych na rzucie budynku należy zabudować złącza kontrolne. Do wykonania zwodów poziomych zastosować drut ocynkowany o średnicy nie mniejszej niż $8 \mathrm{~mm}^{2}$. Połączenie przewodów odprowadzających i zwodów pionowych wykonać jako rozłączne - Śrubowe, o gwincie M 10. Po ścianie zwody odprowadzające wykonać z drutu aluminiowego o średnicy nie mniejszej niż $8 \mathrm{~mm}^{2}$. Dodatkowo na dachu należy zamontować iglice odgromowe chroniące znajdujące się tam urządzenia.

Po wykonaniu prac montażowych dokonać pomiarów, sporządzić protokoły (przez osobę o stosownych uprawnieniach). Pomiary należy wykonywać okresowo i każdorazowo potwierdzać protokołami.

5.9 Uwagi końcowe

Całość prac wykonać zgodnie z obowiązującymi normami i przepisami oraz niniejszą dokumentacją techniczną. Przed załączeniem urządzeń pod napięcie dokonać niezbędnych prób i pomiarów pozwalających na stwierdzenie gotowości instalacji do eksploatacji.

6. Obliczenia

Zasilenie odbiorcy: 3-fazowe
Zapotrzebowanie na moc dla odbiorcy - bez zmian

6.1. Dobór zabezpieczeń

Zabezpieczenie główne - bez zmian

6.2. Sprawdzenie wlz.

Bez zmian

6.3. Obliczenie spadku napięcia na wlz

Bez zmian

6.4 Obliczenia natężenia oświetelnia

Obliczenia przestawiono w formie wydruków z programu DIALUX.

Ochrona odgromowa Analiza ryzyka

utworzona zgodnie z normą europejską:
IEC 62305-2:2006-10
z uwzględnieniem załączników krajowych dla kraju:
PN EN 62305-2:2008

Raport z zestawieniem zastosowanych środków do redukcji ryzyka strat piorunowych, w ramach analizy ryzyka
dla projektu:
Opis projektu / obiektu:

Łobżenica
PL
Klient / Zleceniodawca:

Gmina Łobżenica

Analìza ryzyka wykonana przez:

Leszek Sobala

Analiza ryzyka do oszacowania ryzyka uszkadzeń obiektów zgodnie z PN EN 62305-2:2008

Spis treści

1. Skróty
2. Podstawy normatywne
3. Ryzyko i źródło uszkodzeń
4. Informacje o projekcie
4.1. Wybór ryzyka do uwzględnienia
4.2. Parametry geograficzne i budynku
4.3. Podział obiektu na strefy/strefy ochrony odgromowej
4.4. Linie zasilające
4.5. Ryzyko pożaru
4.6. Srodki podjęte w celu minimallizacji skutków pożaru
4.7. Specjalne zagrożenia w budynku dia zdrowia i życia ludzkiego
5. Analiza ryzyka
5.1. Ryzyko R1, Utrata życia ludzkiego
5.2. Wybór środków ochrony
6. Obowiązek prawny
7. Informacja ogólna
8. Definicja

Analiza ryzyka do oszacowania ryzyka uszkodzeń obiektów
zgodnie z PN EN 62305-2:2008

1. Skróty

a	Stopa amortyzacji
a_{t}	Czas amortyzacji
c_{a}	Roczny koszt zwierząt w strefie budynku, w gotówce
c_{b}	Wartość strefy w budynku, w gotówce
c_{C}	Wartość zawartości w strefie, w gotówce
$\mathrm{c}_{\text {s }}$	Wartość systemów w strefie (z ich funkcjami włącznie), w gotówce
c_{t}	Wartość łączna budynku, w gotówce
$C_{D} ; C_{D J}$	Współczynnik położenia
C_{L}	Roczny koszt całkowitych strat w przypadku braku środków ochrony
CPM	Roczny koszt wybranych środków ochrony
C_{RL}	Roczny koszt strat resztkowych
EB	Wyrównanie potencjałów w ochronie odgromowej
H	Wysokość obiektu
$\mathrm{Hp}^{\text {P }}$	Najwyższy punkt obiektu
i	Stopa procenotwa
$\mathrm{K}_{\mathrm{S} 1}$	Współczynnik związany ze skutecznością ekranowania obiektu (zewnętrzny ekran)
$\mathrm{K}_{\text {S1W }}$	Wymiar oka siatki ekranu budynku
$\mathrm{K}_{\mathrm{S} 2}$	Współczynnik skuteczności ekranu wewnątrz budynku (dotyczy wewnętrznego ekranu)
K ${ }_{\text {S2W }}$	Wymiar oka siatki wewnętrznego ekranu budynku
L1	Utrata życia ludzkiego w obiekcie
L2	Utrata usługi publicznej w obiekcie
L3	Utrata usługi publicznej w urządzeniu usługowym
L4	Utrata dziedzictwa kulturowego w obiekcie
L	Długość budynku
LEMP	Piorunowy Impuls Elektromagnetyczny
LP	Ochrona odgromowa (składająca się z zewnętrznej ochrony (LPS) i środków ochrony przed LEMP)
LPL	Poziom ochrony odgromowej
LPS	Urządzenie piorunochronne
LPZ	Strefa ochrony odgromowej (strefa, w której określone jest oddziaływanie elektromagnetyczne pioruna)
m	Stopa eksploatacyjna
N_{D}	Liczba groźnych zdarzeń wskutek wyładowañ w obiekt
N_{G}	Gęstość piorunowych wyładowań doziemnych
P_{B}	Prawdopodobieństwo fizycznego uszkodzenia obiektu (wyladowania w obiekt)
PEB	Wyrównanie potencjałów w ochronie odgromowej
PSPD	Skoordynowany układ SPD
R	Ryzyko strat
R_{1}	Ryzyko utraty życia ludzkiego w obiekcie
R_{2}	Ryzyko utraty ustugi publicznej w obiekcie
R3	Ryzyko utraty dziedzictwa kulturowego w obiekcie
R_{4}	Ryzyko utraty wartości materialnej w obiekcie
R_{A}	Komponent ryzyka (porażenie istot żywych - wyładowania w obiekt)
R_{B}	Komponent ryzyka (fizyczne uszkodzenie obiektu - wyładowania w obiekt)

Analiza ryzyka da oszacowania ryzyka uszkodzeń obiektów zgodnie z PN EN 62305-2:2008	
R_{C}	Komponent ryzyka (awaria układu wewnętrznego - wyladowania w obiekt)
R_{M}	Komponent ryzyka (awaria układu wewnętrznego - wyładowania w pobliżu obiektu)
RU	Komponent ryzyka (porażenie istot żywych - wyładowania w przyłączone urządzenie usługowe)
RV	Komponent ryzyka (fizyczne uszkodzenie obiektu - wyładowania w przyłączone urządzenie usługowe)
RW	Komponent ryzyka (awaria układu wewnętrznego - wyładowania w przyłączone urządzenie usługowe)
R_{2}	Komponent ryzyka (awaria układu wewnętrznego - wyładowania w pobliżu urządzenia usługowego)
RT	Ryzyko dopuszczalne (maksymalna wartość ryzyka, którą można tolerować w obiekcie poddawanym ochronie)
rf_{f}	Współczynnik redukcji strat w zależności od ryzyka pożaru
${ }^{\text {pp}}$	Współczynnik redukcji strat dzięki zabezpieczeniom przeciwpożarowym
S_{M}	Roczne oszczędności
SPD	Urządzenie do ograniczania przepięć
SPM	Środki ochrony przed LEMP (środki redukujące ryzyko uszkodzenia urządzeń elektrycznych i elektronicznych z powodu LEMP - piorunowego impulsu elektromagnetycznego)
$\mathrm{t}_{\text {ex }}$	Czas występowania niebezpiecznej atmosfery wybuchowej
W	Szerokość budynku
Z	Strefy w budynku

2. Podstawy normatywne

Norma PN EN 62305 składa się z następujących części:

- PN EN 62305-1:2008 - „Ochrona odgromowa - Część 1: Zasady ogólne"
-PN EN 62305-2:2008 - „Ochrona odgromowa - Część 2: Zarządzanie ryzykiem"
- PN EN 62305-3:2009 - „Ochrona odgromowa - Część 3: Uszkodzenia fizyczne obiektów i zagrożenie życia"
- PN EN 62305-4:2009 - „Ochrona odgromowa - Część 4: Urządzenia elektryczne i elektroniczne w obiektach"

3. Ryzyko i źródło uszkodzeń

Aby uniknąć strat w przypadku trafienia pioruna w obiekt, przewiduje się zastosowanie specyficznych środków ochrony dla danego chronionego obiektu. W normie PN EN 62305-2:2008 opisana jest analiza ryzyka i środki ochrony odpowiednie do występującego zagrożenia w obiekcie. Celem analizy ryzyka jest, aby obliczone istniejace ryzyko ograniczyć do wartości akceptowanej (tolerowanej) RT przez dobór odpowiednich środków ochrony.

Bieżąca analiza ryzyka wg PN EN 62305-2:2008 dla projektu - objekt Obiekt wskazuje na konieczność zastosowania środków ochrony. Wartość ryzyka dla obiektu została określona i, jeśli to konieczne, muszą by dobrane środki ochrony do redukcji ryzyka. Wynikiem analizy ryzyka jest nie tylko wybór klasy ochrony odgromowej (LPL I, II, III lub IV) lecz szereg środków ochrony włącznie ze środkami do redukcji pola magnetycznego, czyli ochrony przed LEMP.

W rezultacie należy dobrać uzasadnione ekonomicznie środki achrony, odpowiednie do właściwości istniejącego budynku oraz jego aktualnego wykorzystania.

4. Informacje o projekcie

4.1 Wybór ryzyka do uwzględnienia

Ze względu na rodzaj i wykorzystanie obiektu Obiekt, zostały wybrane i uwzględnione następujące ryzyka:
Ryzyko $\mathrm{R}_{1}: \quad$ Ryzyko utraty życia ludzkiego; $\quad \mathrm{R}_{\mathrm{T}}: 1,00 \mathrm{E}-05$

Akteptowane wartości poszczególnych części ryzyka R_{T} zostały określone. Wartości akceptowane ryzyka dla R1, R2, R3 oraz R4 zostaly podane w normie.

Celem analizy ryzyka jest, aby istniejące ryzyko ograniczyć do wartości akceptowanej (ponoszonej) RT przez dobór odpowiednich środków ochrony uzasadnionych ekonomicznie, które to ryzyko ograniczą do akceptowanego poziomu.

Celem analizy ryzyka jest, aby istniejące ryzyko ograniczyć do wartości akceptowanej (ponoszonej) R_{T} przez dobór odpowiednich środków ochrony uzasadnionych ekonomicznie, które to ryzyko ograniczą do akceptowanego poziomu.

4.2 Parametry geograficzne i budynku

Podstawą analizy ryzyka zgodnie z normą PN EN 62305-2:2008 jest gęstość piorunowych wyładowań doziemnych Ng. Określa ona liczbę bezpośrednich wyładowań piorunowych doziemnych na km^{2} na rok [1/rok/km²]. Wartość 1,80 wyładowań piorunowych na km^{2} na rok została określona dla położenia obiektu Obiekt przy wykorzystaniu mapy gęstości piorunowych wyładowań doziemnych. W rezultacie ze względu na położenie obiektu liczba dni burzowych wynosi 18,00 rocznie.

Wymiary budynku decydują o zagrożeniu bezpośrednim uderzeniem pioruna. Powierzchnie zbierania bezpośrednich / pośrednich uderzerf pioruna są określane w oparciu o te wymiary.

Uwzględniając wymiary obiektu, obliczono następujące powierzchnie zbierania:

Powierzchnia zbierania wyładowań bezpośrednich:	$7251,00 \mathrm{~m}^{2}$
Powierzchnia zbierania wyładowań pośrednich: (obok obiektu)	$245819,00 \mathrm{~m}^{2}$

Analiza ryzyka do oszacowania ryzyka uszkodzeń obiektów zgodnie z PN EN 62305-2:2008

Środowisko otaczające obiekt jest istotnym czynnikiem określającym liczbę możliwych bezpośrednich / pośrednich uderzeń pioruna. Dla obiektu Obiekt jest ono zdefiniowane następująco:
Względne położenie Cdb: 1,00

Jeśli gęstość piorunowych wyładowań doziemnych odnosi się do wielkości i środowiska obiektu, należy oczekiwać częstości:

- bezpośrednich uderzeń pioruna w obiekt: ND $=0,0131$ uderzeń / rok,
- pośrednich uderzeń w obiekt: $\mathrm{NM}=0,4294$ uderzeń $/$ rok.

4.3 Podział obiektu na strefy/strefy ochrony odgromowej

Obiekt budowlany Obiekt nie zostal podzielony na strefy ochrony odgromawej/inne strefy.

4.4 Linie zasilające

Wszystkie linie wchodzące i wychodzące z budynku są uwzględniane w analizie ryzyka. Przewodzące rury nie są uwzględniane jeśli są podłączane do głównej szyny uziemiającej. Jeśli nie są uziemione to należy je uwzględnić w analizie ryzyka (wymagania wyrównania potencjałów!).

W analizie ryzyka dla budynku Obiekt uwzględniono następujace linie:

- LInia energetyczna
- Linia telefoniczna

Dla każdej linii określono parametry, jak np.:

- Rodzaj linii (napowietrzna/podziemna)
- Długość linii (na zewnątrz budynku)
- Otoczenie
- Przyłączony obiekt do linit
- Typ wewnętrznego okablowania (ekranowane/nieekranowane)
- Najmniejsze napięcie wytrzymywane wyposażenia (wytrzymałość urządzeń odbiorczych).

Analiza ryzyka do oszacowania ryzyka uszkodzeń obiektów
zgodnie z PN EN 62305-2:2008

W oparciu o to, ryzyko dla obiektu i jego zawartości z powodu trafienia pioruna w linię lub obok linii, zostało określone i uwzględnione w analizie ryzyka.

4.5 Ryzyko pożaru

Ryzyko pożaru w obiekcie stanowi ważnym czynnikiem determinującym wybór koniecznych środków ochrony. Ryzyko pożaru dla danego obiektu Obiekt określono następująco:

> - Zwykłe

4.6 Środki podjęte w celu minimallizacji skutkőw pożaru

Zostały zaznaczone następujące środki ochrony służące do ograniczenia ryzyka pożaru:

- Gaśnice, stałe obsługiwane ręcznie instalacje gaszące, ręczne instalacje alarmowe, hydranty, pomieszczenia ognioodporne, bezpieczne drogi ewakuacji

4.7 Specjalne zagrożenia w budynku dla zdrowia i życia ludzkiego

Ze względu na liczbę osób, ryzyko paniki dla obiektu Obiekt ustalono na następującym poziomie:

- Trudności ewakuacyjne (osoby wymagające pomocy)

5. Analiza ryzyka

Jak opisano w 4.1, zostały przyjęte następujące ryzyka 5. Niebieski pasek przedstawia wartość tolerowana (akceptowaną) ryzyka określoną w normie, pasek zielony / czerwony przedstawia wartość bieżącą obiczanego ryzyka.

5.1 Ryzyko R1, Utrata życia ludzkiego

Dla osób na zewnątrz i wewnątrz budynku Obiekt ustalono następujące ryzyko:

Tolerowane Ryzyko RT^{2} :	$1,00 \mathrm{E}-05$
Obliczone Ryzyko R1 (brak ochrony):	$8,43 \mathrm{E}-05$

Obliczone Ryzyko R1 (bez ochrony):

8,43E-05

4,69E-06

Aby zredukować istniejące ryzyko, stosuje się środki ochrony opisane w 5.

5.2 Wybór środków ochrony

Ryzyko zostało zredukowane do akceptowanego poziomu przez dobór następujących środów ochrony.
Ten dobór środków ochrony jest częścią zarządzania ryzykiem dla obiektu Obiekt i jest właściwy tylko w

Analiza ryzyka do oszacowania ryzyka uszkodzeń obiektów zgodnie z PN EN 62305-2:2008
odniesieniu do tego obiektu.

Środki ochrony Z ochroną/stan docelowy:

Powierzchnia

Środki ochrony

Współczynnik
pB: \quad System ochrony odgromowej (LPS)
2.000E-01

LPS klasy IV
Ekwipotencjalizacja
pEB: Ulepszona ochrona ogranicznikami przepięć
5.000E-03 zgodnie z LPL III lub IV
Ochrona przeciwpożarowa
Gaśnice, stałe obsługiwane ręcznie instalacje
rp: gaszące, ręczne instalacje alarmowe,
5.000E-01 hydranty, pomieszczenia ognioodporne, bezpieczne drogi ewakuacji

Analiza ryzyka do oszacowania ryzyka uszkodzeń obiektów
zgodnie z PN EN 62305-2;2008

6. Obowiązek prawny

Dane o obiekcie, które przyjmuje się do obliczeń, powinny opierać się na informacji zarządzającego obiektem, właściciela lub właściwych służb lub też powinny być zebrane na miejscu. Zwraca się uwagę, że te dane muszą być jeszcze raz formalnie potwierdzone.

Sposób postępowania przy dokonywaniu obliczeŕ ryzyka użyty w programie DEHNsupport odpowiada normie PN EN 62305-2:2008.

Zwraca się uwagę, że wszystkie założenia, materiały, odwzorowania, rysunki, wymiary, parametry oraz wyniki nie są prawnie wiążące dla osoby wykonującej analizę ryzyka.

Analiza ryzyka do oszacowania ryzyka uszkodzeń obiektów
zgodnie z PN EN 62305-2:2008

7. Informacja ogólna

7.1 Komponenty zewnętrznej ochrony odgromowej

Elementy LPS powinny wytrzymywać bez uszkodzenia elektromechaniczne skutki prądu pioruna i przewidywalne przypadkowe naprężenia i spełnić wymagania wieloczęściowej normy PN EN 50164-x. Poszczególne arkusze normy dotyczą m.in:

- PN EN 50164-1:2010
- PN EN 50164-2:2010
- PN EN 50164-3:2007
- PN EN 50164-4:2009
- PN EN 50164-5:2009

7.1.1 PN EN 50164-1:2010 Wymagania dotyczące elementów połączeniowych

Wymagania dotyczące metalowych elementów połączeniowych, jak np. złączki, elementy łączące i mostkujące, elementy rozprężane i złącza pomiarowe, zostały zdefiniowane w normie PN EN 50164-1. To oznacza, że projektant/wykonawca musi dobrać elementy urządzenia piorunochronnego do przewidywanego obciążenia (klasa H lub N) w miejscu montażu. Tak np. do zwodu pionowego (przez który płynie 100% prądu pioruna) zastosowana zostanie złączka klasy H (100 kA). Do połączeń wewnątrz siatki zwodów lub elementów uziemiających (gdzie przepływa tylko część prądu piorunowego) dobieramy zaciski klasy N (50 kA).

Spełnienie tych wymogów dla poszczególnych elementów winno być wykazane w drodze badań przeprowadzonych przez producenta.

7.1.2 PN EN 50164-2:2010 Wymagania dotyczące przewodów i uziomów

Dla przewodőw, z których wykonywane są zwody i uziomy, norma PN EN 50164-2 stawia konkretne wymagania dotyczące:

- właściwości mechanicznych (wytrzymałości na rozciąganie i wydłużenie),
- właściwości elektrycznych (maksymalna rezystywność)
- badań środowiskowych.

Dla uziomów pionowych oraz prętów uziemiających norma PN EN 50164-2 nakłada wymagania dotyczące doboru materiałów, kształtu i przekroju oraz właściwości mechanicznych i elektrycznych.

Spełnienie wymogów normy stanowi istotną cechę produktu i winno zostać przez producenta zawarte w kartach katalogowych oraz raportach badawczych.

7.1.3 PN EN 50164-3:2007 Wymagania dotyczące iskierników izolacyjynch

Podano wymagania i badania iskierników izolacyjnych (ISG) przeznaczonych do urządzeń piorunochronnych. Iskierniki te mogą być stosowane do pośredniego łączenia urządzenia piorunochronnego z innymi pobliskimi urządzeniami metalowymi, których łączenie bezpośrednie jest niemożliwe ze względów funkcjonalnych

Zgodnie z zapisami normy PN EN 50164-3 iskierniki separacyjne (wszystkie ich elementy konstrukcyjne) muszą być pewne i trwałe oraz bezpieczne w obsłudze dla ludzi i otoczenia.
7.1.4 PN EN 50164-4:2009 Wymagania dotyczace elementów mocujących przewody

Norma PN EN 50164-4 określa wymagania oraz sposób przeprowadzania badań dla metalowych oraz nie metalowych elementów mocujących przewody, które stosuje się w połączeniu z układem zwodów i przewodów odprowadzających.

7.1.5 PN EN 50164-5:2009 Wymagania dotyczace uziomowych studzienek kontrolnych iich uszczelnień

Wszystkie studzienki rewizyjne oraz przepusty uziemiające winny być tak zaprojektowane i wykonane, aby stanowiły trwały pewny element LPS i nie zagrażały ludziom i otoczeniu.

Norma PN EN 50164-5 lustala wymogi oraz sposób przeprowadzenia badań dla skrzynek rewizyjnych (np. próba obciążeniowa) oraz przepustów (np. próba szczelności).

8. Definicja

Skoordynowany uklad SPD

zestaw właściwie dobranych, skoordynowanych i zainstalowanych SPD w celu redukcji awarii układów elektrycznych i elektronicznych

Urzadzenie izolujące

urządzenie redukujące przepięcia przewodzone na przejściu między strefami LPZ. Zalicza się do nich m.in. transformatory separacyjne z uziemionym rdzeniem, przewody światlowodowe bez części metalowych lub optozłącza. Wytrzymałość izolacji takiego urządzenia musi spełniać wymagania samodzielnie lub z pomocą ograniczników przepięć - SPD.

LEMP - piorunowy impuls elektromagnetyczny [en: lightning electromagnetic impulse] wszystkie elektromagnetyczne skutki oddziaływania prądu pioruna jak sprzężenie galwaniczne, indukcyjne lub pojemnościowe.Obejmuje on udary przewodzone oraz skutki wypromieniowania impulsowego pola elektromagnetycznego.

LP Ochrona odgromowa [en: lightning protection]

kompletny system ochrony budynku, włącznie z ochroną systemów wewnętrznych i zawartości, z ochroną osób przed skutkami oddziaływania wyładowań atmosferycznych. Składa się z LPS i środków ochrony przed LEMP.

LPL - Poziom ochrony odgromowej (I, II, III lub IV) [en: lightning protection level]

Liczba odniesiona do zestawu wartości parametrów prądu pioruna związanych z prawdopodobieństwem, że skojarzone maksymalne i minimalne wartości projektowe nie będą przekroczone w naturalnie występujących piorunach.

LPS - Urządzenie piorunochronne

kompletne urządzenie stosowane do redukcji szkód fizycznych powodowanych wyładowaniami piorunowymi w obiekt

EB - Wyrównanie potencjałów w ochronie odgromowej [en: lightningequipotentialbonding] wyrównanie potencjałów pomiędzy metalowymi częściami LPS, bezpośrednie przewodzące połączenia lub przez ograniczniki przepięć, w celu ograniczania różnic potencjałów przy przepływie prądu piorunowego.

Urządzenie do ograniczania przepięć SPD [en: surge protective device]
urządzenie przeznaczone do ograniczania przepięć przejściowych i do odprowadzania prądów udarowych. Zawiera przynajmniej jeden element nieliniowy

Węzeł

miejsce w linii dochodzącej do budynku, od którego można pominą́ propagację udaru: Przykłady węzłów to: punkt w odgałęzieniu linii elektroenergetycznej przy transformatorze SN/nn, multiplexer lub centrala w linii telekomunikacyjnej lub SPD zainstalowany w linii.

Analiza ryzyka do oszacowania ryzyka uszkodzeń obiektów
zgodnie z PN EN 62305-2:2008

Uszkodzenie fizyczne

uszkodzenie obiektu budowlanego (lub jego zawartości) albo urządzeń usługowych będące skutkiem: mechanicznych, termicznych, chemicznych i wybuchowych oddzialywań piorunowych.

Porażenie istot żywych
porażenia, łącznie z utratą życia ludzi lub zwierząt, wskutek napięç dotykowych i krokowych, wywoływanych przez piorun.

R-Ryzyko strat

wartośś prawdopodobnej średniej rocznej straty (ludzi i dóbr), wskutek oddziaływania pioruna, w stosunku do całkowitej wartości (ludzi i dóbr) obiektu poddawanego ochronie.

ZS - Strefa w budynku

część obiektu o jednorodnych własnościach, gdy tylko jeden zestaw parametrów jest angażowany do oszacowania komponentu ryzyka.

LPZ - Strefa ochrony odgromowej [en: lightning protection zone]

strefa, dla której określono piorunowe środowisko elektromagnetyczne. Granice strefy LPZ niekoniecznie muszą być granicami fizycznymi obiektów (np. ścianami, podłogą i sufitem).

Ekran magnetyczny
osłona metalowa, ażurowa lub ciągła, otaczająca chroniony obiekt lub jego część, stosowana w celu zredukowania skutków awarii układów elektrycznych i elektronicznych.

Kabel piorunochronny

kabel specjalny o zwiększonej wytrzymałości elektrycznej, którego metalowa powłoka pozostaje w ciągłym kontakcie z gruntem albo bezpośrednio, albo za pomocą osłony przewodzącej z tworzywa sztucznego

Piorunochronny kanal kablowy

kanał kablowy o małej rezystywności w kontakcie z gruntem (np. zbrojony beton z wzajemnie połączonym zbrojeniem ze stali konstrukcyjnej lub kanał metalowy)

Przedszkole Łobżenica - Piwnica
1 19 * LUG 090250.5L01.711 ATLANTYK STRONG LED 1299 ED $31001 \mathrm{~m} / 840$ PMMA opal IP65 ($2786 \mathrm{Im} ; 28.0 \mathrm{~W}$)
$\begin{array}{lll}2 & 13^{*} & \text { LUG 090250.5LO3.711 ATLANTYK STRONG LED } 1299 \text { ED } 44001 \mathrm{~m} / 840 \text { PMMA opal IP65 }(3889 \mathrm{~m} ; 35.0 \mathrm{~W}) \\ 3 & 1^{*} & \text { LUG 090250.5L04.711 ATLANTYK STRONG LED } 1299\end{array}$
41^{*} LUG 100041.5 LO23.201 AMBRA LED 390 ED 27 W white 4000 K IP40 white ($1811 \mathrm{Im} ; 29.0 \mathrm{~W}$)

Izolinie
300.01 x

Temat opracowania: Termomodernizacja i przebudowa budynku Przedszkola Publicznego w Lobżenicy; dz. nr 499, ul. Batorego 5,89-310 Eobżenica
Temat ysunku: Rzut piwnicy - instalacje elektryczne wewnętrzne
Inwestor: Gmina Kobżenica ul. Sikorskiego 7, 89-310 kobżenica
Projektowal/Sprawdzil:
Data:
RYS. NR E-01

XII. CHARAKTERYSTYKA I AUDYT ENERGETYCZNY

Projektowana charakterystyka energetyczna budynku Przedszkola Publicznego w Lobżenicy								
Parametry przegród nieprzezroczystych budowlanych								
I. Przegrody ściany zewnętrzne								
Lp.	Nazwa przegrody		Symbol	Wsp. U $\left.\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$		Wsp.	U wg Wt 2014 [$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$]	Warunek spelniony
1	Ściana zewnętrzna -proj. ocieplenie styropian 16 cm		m SZ 1	0,19			0,25	Tak
II. Przegrody ściany na gruncie								
Lp.	Nazwa przegrody		Symbol	Wsp. U $\left.\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$		Wsp.U wg Wt 2014 [W/m $\left.{ }^{2} \mathrm{~K}\right]$		Warunek spelniony
1	Ściana fundament. Proj. ocieplenie styropian 7 cm		SG 1	0,22		Brak wymagań		Tak
III. Przegrody podłogi na gruncie								
Lp.	Nazwa przegrody		Symbol	Wsp. U $\left.\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$		Wsp.U wg Wt 2014 [$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$]		Warunek spelniony
1	Podłoga na gruncieBez zmian		PG 1	0,97			0,45	Nie
IV. Dach								
1	DachOcieplenie wełna min. granulowaną		D 1	0,15			0,2	Tak
V. Przegrody drzwi zewnętrzne								
Lp.	Nazwa przegrody		Symbol	Wsp. U $\left.\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$		Wsp.U wg Wt 2014 [$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$]		Warunek spetniony
1	Drzwi zewnętrzne -wymieniane		DZ 1	1,3			1,7	Tak
Parametry przegród przezroczystych								
VI. Okna zewnętrzne								
Lp.	Nazwa przegrody	Symbot	Wsp. U [$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$]	Wsp.oszkle nia g	Udzia oszklo	al pow. onej C	Wsp.U wg W 2014 (W/m²K	Warunek spetniony
1	Okno zewnętrznewymieniane	0	0,9	0,75		70	1,3	Tak

3) Tabela zbiorcza sprawności systemu ogrzewania i wentylacji

Wg Audytu

4) Tabela zbiorcza sprawności systemu przygotowania cieplej wody

Wg audytu

5) Tabela zbiorcza sprawnosci systemu oświetlenia

Wg audytu

Wskaźnik EP po termomodernizacji $57,83 \mathrm{kWh} /(\mathrm{m} 2 \cdot$ rok)
Projekt: 1
Llcencla dla: Energo Expert Mariusz Wozniak [Lor]

1. Strona tytułowa audytu energetycznego

2. Imię, Nazwisko, adres audytora koordynujagcego wykonanie audytu, posiadane kwallfikacje, podpls: Mariusz WoÉniak
Ractawówka 45 e 36-047 Radawówka
3. Wspótautorzy audytu: imiona, nazwiska, zakresy prac

$L p$.	Imię i nazwisko	Zakres udziatu w opracowaniu audytu energetycznego
1	-	

5. Mlejscowosé: Łobżenica Data wytonania opracowania strat 2016
6. Spis tresici

7. Karta audytu energetycznego budynku
8. Inwentaryzacja techniczno-budowlana budynku
9. Ocena stanu technicznego budynku w zakresie is
10. Dokumentacja wyboru optymalnych wariantów przedsięwzięcia termomodernizacyinego
11. Ocena stanu technicznego budynku w zakresie istotnym dla wskazania whasciwych usprawnień i przedsięwzięc
termomodernizacyjnych
termomodemizacyjnych
termomodemizacyjnego
12. Zalączniki.
[^6]| 2.4.2. | Sprawnosć przesylu | 1,000 | 0,700 |
| :---: | :---: | :---: | :---: |
| 2.4.3. | Sprawność regulacji i wykorzystania | 1,000 | 1,000 |
| 2.4.4. | Sprawnosć akumulacji | 0,840 | 0,840 |
| 2.5. Charakterystyka sysiemu wentylacji | | Stan przed termomodernizacja | $\begin{gathered} \text { Stan po } \\ \text { termomodernizacjl } \end{gathered}$ |
| 2.5.1.1. | Rodzaj wentylacji | Wentylacja grawitacyjna | Wentylacja grawitacyina |
| 2.5.1.2. | Sposób doprowadzenia i odprowadzenia powietrza | stolarka/kanaly grawitacyine | stolarka/kanaly grawitacyine |
| 2.5.1.3. | Strumień powietrza zewnętrznego [$\left.\mathrm{m}^{3} \mathrm{~m}\right]$ | 5511,36 | 5511,36 |
| 2.5.1.4. | Krotność wymian powietrza [1/h] | 1,00 | 1,00 |
| 2.6. Charakterystyka energetyczna budynku | | Stan przed termomodernizacja | $\begin{gathered} \text { Stan po } \\ \text { termomodernizacil } \end{gathered}$ |
| 2.6.1. | Obliczeniowa moc cieplna systemu grzewczega [kW] | 161,35 | 106,49 |
| 2.6.2. | Obliczeniowa moc ciepina na przygotowanie cwu [kW] | 6,04 | 6,04 |
| 2.6.3. | Roczne zapotrzebowanie na cieplo do ogrzewania budynku (bez uwzglẹdnienia sprawnosci systemu grzewczego i przerw w ogrzewaniu) [GJ/rok] | 666,11 | 229,37 |
| 2.6.4. | Roczne obliczeniowe zužycie energii do ogrzewania budynku (z uwzględnieniem sprawności systemu grzewczego i przerw w ogrzewaniu) [G.J/rok] | 859,81 | 259,06 |
| 2.6.5. | Roczne obliczeniowe zużycle energil do przygotowania cieplej wody uzytkowej [G.l/rok] | 64,99 | 101,29 |
| 2.6.6. | Zmierzone zużycle ciepla na ogrzewanie przellczone na warunki sezonu standardowego (slużqce werytikacji przylettych skladowych danych obliczeniowych bilansu ciepla) [GJ/rok] | brak danych | \cdots |
| 2.6.7. | Zmierzone zuzycie ciepła na przygotowanie cieplej wody uzytkowej (stużące weryikikacji przyjetych składowych danych obliczeniowych bilansu ciepta) [Gd/rok] | | -- |
| 2.6.8. | Wskȧ̇nik rocznego zapotrzebowania na cieplo do ogrzewania budynku (bez uwzglẹdnienia sprawności systemu grzewczego i przerw w ogrzewaniu) [kWh/(m²rok)] | 106,91 | 36,81 |
| 2.6.9. | Wskaźnik rocznego zapotrzebowania na cieplo do ogrzewania budynku (z uwzglèdnieniem sprawności systemu grzewczega i przerw w ogrzewaniu) $\left[\mathrm{kWh} /\left(\mathrm{m}^{2} \mathrm{rok}\right)\right]$ | 137,99 | 4才,58 |
| 2.6.10** | Udzial odnawialnych źródel energii [\%]
 Instalacja fotowoltaiczna 15 kW projektowana do montażu na dachu budynku (obliczenia w zalạczniku do audytu). | 0,00 | 42,6 |
| 2.7. Opłaty jednostkowe (obowiazulace w dniu sporządzania audytu) | | Stan przed termomodernizacja | $\begin{gathered} \text { Stan po } \\ \text { termomodernizacji } \end{gathered}$ |
| 2.7.1. | Koszt za 1 GJ ciepla do ogrzewania budynku *** [z/G. $]$ | 65,89 | 65,89 |
| 2.7.2 | Koszt 1 MW mocy zamówionej na ogrzewanie na miesiąc *** | 0,00 | 0,00 |

Projekt: 1
Licencia dla: Energo Expert Mariusz Woźniak [L01]

	[zI/(MW-m-c)]				
2.7.3.	Koszt przygotowania $1 \mathrm{~m}^{3}$ clephej wody uzytkowej *** [zi/m ${ }^{3}$]			43,30	49,12
2.7.4.	Koszt 1 MW mocy zamówionej na przygotowanie cieplej wody użytkowej na miesiąc **** [zt/(MW-m-c)]			0,00	0,00
2.7.5.	Miesięczny koszi ogrzewania $1 \mathrm{~m}^{2}$ powierzchni uzytkowej [$\mathrm{z} V\left(\mathrm{~m}^{2} \cdot \mathrm{~m}-\mathrm{c}\right)$]			3,38	1,02
2.7.6.	Miesięczna oplata abonamentowa [z//m-c]			0,00	0,00
2.7.7.	Inne [zt]			0,00	0,00
2.8. Charakterystyka ekonomiczna optymainego wariantu przedsięwzięcia temomodernizacyinego					
Minimaina kwota whasna (15\%) [2才]		81279,98	Roczne zmniejszenie zapotrzebowania na energie [\%]		60,58
Maksymaina kwota dotacij (85\%) [2']		460 586,59			
Planowane koszty catkowite [z才]		541866,57			

*Dla budynku składającego się z cześci o róznych funkcjach ù̀ytkowych należy podać wszystkie dane oddzielnie dia ** Uoze [\%] obliczany zgodnie z rozporządzeniem dotyczącym sporządzania swiadectw, jako udzial odnawialnych żródeł energii w rocznym zapotrzebowaniu na energię koricową dostarczoną do budynku dla systemu grzewczego oraz *** Oplata zmienna zwiazana z dystrybucja i przesyłem jednostki energii.
Projekt: 1
Llcencla dla: Energo Expert Mariusz Wożniak [L01]

4.5. Charakterystyka systemu grzewczego			
Wytwarzanie	Kotly niskotemperaturowe na paliwo gazowe lub ciekłe, z zamknięta komora spalania i palnikiem modulowanym, o mocy nominalnej powyżej 50 do 120 kW Paliwo - gaz ziemny	$\eta_{M_{r, d}}=$	0,910
Przesylanie ciepla	C.o. wodne z lokalnego žródla clepla usytuowanego w ogrzewanym budynku z zaizolowanymi przewodami, armatura urzązeniami, które są zainstalowane przestrzeni ogrzewanei	$\eta_{H, d}=$	0,960
Regulacja systemu grzewczego	Ogrzewanle wodne z grzejnikami czlonowymi lub płytowymi w przypadku regulacji centralnej bez automatycznej regulacji miejscowej	$\eta_{1,0}=$	0,770
Akumulacje ciepła	Butor w systemie grzewczym o parametrach 70/55 oC wewnatiz osiony termicznej budynku	$\eta_{1,5}=$	0,930
Czas ogrzewania w okresie tygodnia	Liczba dni: 5 dni	$w_{1}=$	0,850
Przerwy w ogrzewaniu w okresie doby	Ligzba godzin: 8 godzin	$w_{\text {d }}=$	0,950
			0,626
Informacje uzupetniajace dotyczace przerw w ogrzewaniu	\ldots-.		
Modernizacja systemu grzewczego po 1984 r.	Instalacja byla modernizowana po 1984 r. Modernizacja polegala na: Kociol gazowy niskotemperaturowy producent Viessmann typ Vitoplex 100 SX1	wymag oszcz 15	
Moc ciepina zamówiona (centralne ogrzewanie)		$\cdots \mathrm{MW}$	
4.6. Charalterystyka instalacjl cleple] wody uytkowej			
Wytwarzanie ciepla	Elektryczny podgrzewacz akumulacyjny <z zasobnikiem cieptej wody użytkowej bez strat)	${ }_{7 w, 0}=$	0,960
Przesyt cieplej wody	Podgrzewanie wody bezposrednio przy punkach poboru	$\eta_{w, d}=$	1,000
Regulacja i wykorzystanie	---	$\eta_{\mathrm{W}, \mathrm{s},}=$	1,000
Akumulacja ciepla	Zasobnik w systemie wg standardu budynku niskoenergetycznego	$\eta_{w, s}=$	0,840
Sprawnosć catkowita systemu c.w.u. $\eta_{W, 104}=\eta_{W, 9} \eta_{W, d} \eta_{W, s} \eta_{W, e}=$			0,806
Moc cieplna zamówiona (ciepla woda użytkowa)		-..	
4.7. Charakterystyka systemu wentylacjl			
Rodzaj wentylacji	Wentylacja grawitacyina		
Sposób doprowadzania i odprowadzania powietrza	stolarka/kanaly grawitacyine		
Strumień powistrza wentylacyinego	5511,36		
Krotnosić wymian powietrza	1,00		

Projekt: 1
Licencla dla:
Licencla dla: Ensrgo Expert Mariusz Woéniak [L01]

Licencla dla: Energo Expert Mariusz Woźniak [L01]			
4. Inwentaryzacja techniczno-budowlana budynku			
4.1. Ogólne dane techniczne			
Konstrukcja/technologia budynku			
Kubatura ogrzewania			
Powierzchnia netto budynku			
Powierzchnia użytkowa częsci mieszkalnej			
Wspôtczynnik kształtu			
Powierzchnia zabudowy budynku			
llostć mieszkań			
llosce uliytkowników			
4.2. Dokumentacja techniczna budynku			
Dokumentacja techniczna budynku znajduje się w zalaczziku stanowiącym integralną częsć audytu energetycznego.			
4.3. Opis techniczny podstawowych elementów budynku			
4.3.1. Zbiorcza charakterystyka przegród budowlanych			
Ściany zownętrzne			$w /\left(m^{2}-k\right)$
Dach/stropodach			$W /\left(m^{2} \cdot k\right)$
Strop piwnicy			$W /\left(m^{2} \cdot k\right)$
Okna			$W /\left(m^{2} \cdot k\right)$
Drzwibramy			$\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$
Okna polaciowe			$W /\left(m^{2} \cdot \mathrm{~K}\right)$
Ściany na gruncie			$W /\left(m^{2} \cdot \mathrm{~K}\right)$
Podłogi na gruncle			$W /\left(m^{2} \cdot \mathrm{~K}\right)$
Stropy wewnetrzne			$W /\left(m^{2} \cdot k\right)$
Stropy zewnetrzne			$\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$
4.4. Taryiy 1 opłaty			
Ceny clepta - c.o.	Stan przed termomodernizacja		Stan po termomodemizacji
Oplata za 1 G.J na ogrzewanie	65,89 z/GJ		65,89 2\%G」
Oplata za 1 MW mocy zamówionej na ogrzewanie	0,00 $\mathrm{zt}(\mathrm{MW} \cdot \mathrm{m}-\mathrm{c})$		0,00 $\mathrm{z} /(\mathrm{MW} \cdot \mathrm{m}-\mathrm{c}$)
Inne koszty, abonament	0,00 $\mathrm{zt} / \mathrm{m}-\mathrm{c}$		$0,00 \mathrm{z} / \mathrm{m}-\mathrm{c}$
Ceny clepla - c.w.u.	Stan przed termomodernizacia		Stan po termomodernizacji
Oplata za 1 GJ	139,95 $\mathbf{2 / G J}$		65,89 zıGJ
Oplata za 1 MW mocy zamówionej na podgrzanie c.w.U.	0,00 \mathbf{z} ($(\mathrm{MW}-\mathrm{m}-\mathrm{c})$		0,00 $\mathrm{zt}(\mathrm{MW} \cdot \mathrm{m}-\mathrm{c})$
Inne koszty, abonament	0,00 z/fm-c		0,00 z/fm-c

Projekt: 1 Llcencja dla: Energo Expert Marusz	miak [L01]
Modernizacja przegrody Okna_Stare ODS 'Wentylacja grawilacyina'	Wymagany wg WT'2019 wspólczynnik przenikania ciepla przegrody (okna piwniczne) Umax $=1,40[\mathrm{~W} / \mathrm{m} 2 \mathrm{~K}]$. Wymiana stanych, nieszczelnych piwnicznych okien drewnianych o wspotczynniku $U=3,10[\mathrm{~W} / \mathrm{m} 2 \mathrm{~K}]$ na szczeine okna PCV o wspólczynniku Umax $=1,40$ W/m2K].
System grzewczy	Ogrzewanie \mathbf{z} kotłowni usytuowanej w sqsiednim budynku Gimnazjum. Kocioł gazowy niskotemperaturowy producent Viessmann typ Vitoplex 100 SXI Grzejniki żeliwne w dobrym stanie technicznym bez glowic termostatycznych. Przewiduje się montaz glowic termostatycznych, plukanie chemiczne istniejacej instalacji z regulacja hydraulliczna.
Instalacja cieplaj wody użytkowaj	Elektryczne akumulacyine podgrzewacze wody, producent Beretta, moc 4,8 kW, poj. $120 \mathrm{dm3}$, rok produkcji 2011, szt. 1 (kuchnia) oraz elektryczne przeptywowe podgrzewacze wody, producent Biawar lub Delpo, moc $1,5 \mathrm{~kW}$ szt. 4 (lazienki) w dobrym stanie technicznym. Przewiduje uruchomienie cwu doprowadzonej z koHowni gazowej usytuowanej w sąsiednim budynku Gimnazjum z montazem zbiomika cwu z grzałką elektryczną ze wsparciem instalacją fotowoltaiczną (obliczenia w zalaczniku do audytu).

 Licencla dia: Energo Expent Marlusz Wozrlak (LOI)
5. Ocena stanu technieznego budynku w zakresie istotnym dla wskazania wiaściwych usprawnień i
przedsięwzięć termomodernizacyjnych

Rodzal przegrody lub instalaçi	Charakterystyka stanu istnjejacego I mozilwosel poprawy
Ściana zewnętrzna	Wymagany wg WT'2019 wspóczynnik przenikania ciepla przegrody Umax $=0,20$ [W/m2k]. Istniejaca sciana zewnẹtrzna budynku posiada wspolczynnik przenikania ciepla przegrody Umax $=0,776$ [W/m2K]. Zaleca się docieplenie plytami styropianowymi.
Sciana na gruncie	Wymagany wg WT2019 wspóczynnik przenikania ciepta przegrody Umax $=0,45$ [W/m2K]. Istniejaca sciana zewnẹtrzna piwnic segmentu A budynku posiada wspólczynnik przenikania ciepla przegrody Umax= 0,588 [W/m2k]. Zaleca się docieplenie ścian fundamentowych styrodurem.
	Wymagany wg WT'2019 wspótczynnik przenikania ciepla przegrody Umax $=0,30$

Wymagany wg WT'2019 wspotczynnik przenikania ciepła przegrody Umax $=0,30$
[W/mak]. Istniejaca podioga parteru posiada wspóczynnik przenikania ciepla
przegrody Unal przegrody Umax = 0,935 [W/m2K]. Z uwagi na znaczne utrudnienia wykonania
docieplenia przegrody (podłogi), nie zaleca sie działań termomodemizacynych, docieplenia przegrody (podłogi), nie zaleca sie działań termomodemizacyinych,
które generowałyby znaczne koszty inwestycjize stosunkowo niskim koricowym
efektem energetycznym - inwestycia nlezasadna ekonomicznie i technicznie. Wymagany wg WTT2019 wspótczynnik przenikania ciepla przegrody Umax $=0,30$ Wymagany wg WT'2019 wspólczynnik przenikania ciepła przegrody Umax = 0,30
[W/m2K). Istniejaca podloga parteru posiada wspótczynnik przenikania ciepta przegrody Umax= 1,03 (W/m2K). Z uwagi na znaczne utrudnienia wykonania
docieplenia przegrody (podfogi), nie zaleca się działań termomodernizacyinych, które generowalyby znaczne koszty inwestycij ze stosunkowo niskim koñcowymi
efektem energelycznymn - inwestycja niezasadna ekonomicznie i technicznie. Ponieważ różnica temperatur pomiẹdzy ogrzewana piwnica a parterem jest poniżej 8 stopni Celcjusza to zgodnie z WT'2019 a dla stropów mieddzykondygnacyinych brak jest wymagań. W zwiazzu z powyższym nie planuje
się działań termomodernizacyjnych.

Wymagany wg WT'2019 wspótczynnik przenikania ciepla przegrody Umax $=0,15$

Wymagany wg WT'2019 wspólczynnik przenikania ciepla przegrody Umax= 1,30 W/m2K]. Z uwagi na fakt wymiany w 2012 r. stolarki drzwiowej na drzwi szczelne,
o wspotczynniku przenikania ciepla $\mathrm{U}=1,60$ [W/m2K], ktora jest obecnie w bardzo dobrym stanie, nie zaleca sie działań termomodernizacyinych, ktore
generowalyby znaczne koszty inwestycil ze stosunkowo niskim koricowym
 Wymagany wg WT2019 wspófczynnik przenikania ciepla przegrody Umax = 1 ,30
[W/m2K]. Wymiana starych drzwi zewnetrznych do budynku o wspóczynniku $\dot{U}=$
$2,60[\mathrm{~W} / \mathrm{m} 2 \mathrm{~K}]$ na drzwi docieplone o wspotczynniku Umax $=1,30$ [W/m2K].
 szczelne, o wspotczynniku przenikania ciepla $U=1,30$ [W/m2K), ktora jest
obecnie w bardzo dobrym stanie, nie zaleca sie działań termomodernizacyinych,
ktore
 Podłoga na gruncie_piwnica

Podłoga na gruncie_parter
Strop wewnẹtrany_nad piwnica Modernizacja przegrody
Drzwi zzwnetrzne_Nowe
Wentylacja grawitacyina'

Modernizacja przegrody
Drzwi zewnẹtrzne,Stare DZS
Wentylacia gravitacyina'
Modernizacja przegrody
Okna_Nowe ODN Wentylacja grawitacyjna'

Optymainym weriantem przedsiqwzlecia jeas Wariant 1
Charakiteryatyka wariantu optymalnego:
Koszt reallzacij wariantu optymalnego: 249553,86 zt Prosty czas zwrotu wariantu optymanego: 12,16 lat Optymalna grutoséc dodatkowej izolaci: 16 cm

Projekt: 1 : Energo Expert Mariusz Wozzniak [L01]
Licencia dla:
6. Dokumentacja wyboru optymalnych wariantów przedsleqwziecia termomodernizacyinego

 Optymainym wariantom przedsiewziepcia jast Wariant 1 Informacie uzupetiaiace: | rymkowych. |
| :--- |

Projekt: 1	
Licencja dla: Energo Expert Mariusz Wożniak [L01]	11

Licencja dla: Energo Expert Mariusz Wożniak [L0t]
6. Dokumentacja wyboru optymalnych w
6. Dokumentac|a wyboru optymalnych wariantów przedsięwzięcia termomodemizacyinego
6.1 Ocena oplacalności I wybór warlantu zmnielszalacego straty ciepta przez przenlkanle przez śclany,
stropodachy

Modernizacja przegrody Strop zewnętrzny	
Proponowany materiał dodatkowej izolaci:	Warlamt 1, Welna min

Proponowany materiał dodatkowej izolacji:	$\begin{array}{c}\text { Warlamt 1, Welna mineralna granulowana Paroc BLT } \\ 9, \lambda=0,038[\mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})] ;\end{array}$
P	

	$9, \lambda=0,038[\mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})] ;$
Powierzchnia przegrody do obliczeń strat ciepla As:	$1106,70 \mathrm{~m}^{2}$

$1106,70 \mathrm{~m}$

$\mathbf{5 6}, 89$	$\mathbf{n t} 1$	$\mathbf{1 1 . 1}$
	65,89	65,89

Optymainym wariantem przedelowzieccla lest Wariant 1
Charaklerystyka wariantu optymalnego:
| Koszt realizacii wariantu optymalnego: 71315,42 zi
Prosty czas zwrotu wariantu optymahego: 8,80 la
Optymalna grubost dodatkowee izolacii: 18 cm
| Informacte uzupe:niajace:

Projekt: 1
Licencla da: Energo Expert Martusz Wozniak [L01]
Dan

Ocena oplacalnoscl I wytór warlantu zmnlejszajacego straty clepla przez przenlkanie		
Modernizacja przegrody Sclana na gruncle		
Proponowany material dodatkowe		Warlant 1, Styrodur XPS, $\lambda=0,038[\mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})]$;
Powierzchnia przegrody do oblicz		$0,00 \mathrm{~m}^{2}$
Powierzchnia przegrody do oclep		100,54m ${ }^{2}$
Stopniodni: ... dzieríK/rok	$\mathrm{t}_{\text {mo }}=\ldots{ }^{\circ} \mathrm{C}$	$\mathrm{t}_{20}=\ldots{ }^{\circ} \mathrm{C}$

\because

Ocena oplacalnosei i wybór wariantu polegajaccego na wymianie okien lub drawi oraz poprawienlu systemu wentylaci
｜Ocena oplacalnosci i wybór wariantu polegajaceego na wymlanie okien Iub drawi oraz poprawienlu systemu wentylacil
Modernizacia przegrody Okna ODS＇Wentylyacja grawitacyina＇ Minimahy strumien powietrza wentylacyinego V： $716,72 \mathrm{~m}^{\mathrm{y}} \mathrm{h}$
Powierchnia calkowita okien lub drzwi przed modernizacia： $10,71 \mathrm{~m}^{2}$
Powierzchnia calkowita okien flub drzwi po modernizacii： $10,71 \mathrm{~m}^{2}$
Powierzchnia cakkowita okien lub drzwi do wyilczeń nakladow： $10,71 \mathrm{~m}^{2}$
Stopieŕn wyeksponowania budymku na dzialanie wiatr：Srednie ostloniecie cr＝1，0，cW＝1，00 Stan istrieieqcy：Stolarka bartzo nieszczzelna（ $\mathrm{a}>4$ ）
Stopniodni： 2565,70 dzient－K／rok \quad oi $=15,00^{\circ} \mathrm{C} \quad \theta \theta=-18,00^{\circ} \mathrm{C}$

| Inne koszty，abonament $\quad \mathrm{ztm-c}$ | 0,00 |
| :--- | :--- | :--- |
| | 1,50 |

Wspbbkzymik c_{m}	1,50
Wsobkiynnik a_{m}	

｜Wspobtzymmika	-

Straty ciepta na przenikanie a as 18.71
Zapotrebbwantie na moc MN 0，0132

6．3 Ocena optacalnoścl I wybor wariantu prowadzacego do 2 mnlelszenia zapotrzebowanla na cleplo na praygotowanie cleplej wody ukytkowej

6．3．1 Obllczenia mocy cieplnej oraz zapotrzebowanle na cleplo do przygotowania cwu

$\begin{aligned} & \text { E } \\ & \text { 镸 } \\ & 3 \end{aligned}$	\ldots	응	\％	음	${ }^{4}$	苟	\％	8	응	\％	P	（	墻

		Stan istriejacy	Wariant 1
Oplata zal 1 GJ	［2VGJ］	139，95	65，89
Oplata za 1 NW mocy zamówionej na podgranie cWu	［ $2 \mathrm{l} / \mathrm{MW}$ ］	0，00	0，00
Inne koszty，abonament	［ 27$]$	0，00	0，00
Roczna oszczędnost kosztów 40	［z／a］	\cdots	2421，91
Koszt modemizacji Nu	［2］］	\cdots	77490，00
SPBT	［lat］	－－－	32，00

[^7]

		Stan istrieiacy
Oplata za 1 GJ	［ 2 V GJ］	139，95
Oplata za 1 MW mocy zamówionej na podgrzanie cNu	［z／MW］	0，00
Inne koszty，abonament	［ 27$]$	0，00
Roczna 06zczędnosct kosztów 40	［z／a］	－－
Koszt modemizacji Nu	［2］］	．－．
SPBT	［lat］	－－－

Projekt: 1 Licencla dla; Energo Expert Mariusz Wożniak [L01]		
6.4.2. Rodzaje ulepszeń termomodernizacyinych skladalạce się na optymalny wariant przedsięwziẹcia termomodernizacyinego poprawlajacy sprawność cleplna systemu grzewczego		
Rodzaje ulepszent termomodernizacyinych		Wartosci sprawnosci skadowych n oraz wspólczymnikow w *)
Wytwarzania ciepta, np. wymiana lokalnego wbudowanego Ėrodła ciepla $\eta_{M_{s}}$		0,910
Przesylania ciepla, rp. izolacja pionów zasilających $\eta_{\text {H,d }}$		0,960
Regulacij systemu cgrzewczego, np. wprowadzenie automatyki pogodowej $\eta_{H_{B}}$		0,880
Akumulaç ciepla, np. wprowadzenie zasobrika buforowego $\mathrm{n}_{\mathrm{H}, \mathrm{s}}$		0,930
Uwzględnienie wprowadzenia przerw na ogrzewarie w ciagu tygodnia w_{t}		0,850
Uwzględnienie wprowadzenia przerw na ogrzewanie w ciagu doby w_{4}		0,950
		0,715
${ }^{*}$)- przyimuje się 2 tab 2-6 znajduiących się w części 3. 6.4.3 Uproszczona kalkulacja koszlów przedslęwzięcia poprawiającego sprawność systemu grzewezego		
Planowane usprawnienia:		Nakłady
Montaz glowic termostatycznych.		8364,00
Phkanie chemiczne istriejącej instalacij z regulacija hydrauliczna.		20910,00
		29274,00
6.4.4 Opls zastosowanych ulepszeń dotyczących poprawy sprawności systemu grzewczego		
Usprawnienia termomodernizacyjne	Opis zastosowanych usprawnień	
Ulepszenie sprawnosci wytwarzania $\eta_{\text {a }}$	\|Nie przewiduje się dz	odernizacyinych.
Ulepszenie sprawnosel przesylu η_{d}	\| Nie przewiduje sieq dzlałan termomodernizacyjnych.	
Ulepszenie sprawnosci regulacij η_{o}	Przewiduje siẹ montaz chemiczne istniejace Szacunkowe koszty wasna na podstaw Sekocenbud z uwzgl	ostatycznych, plukanie egulacją hydrauliczna. oparciu o kalkulację cennikow Bistyp lub rynkowych.
Ulepszenie sprawności akumulacji $\eta_{\text {s }}$	\|Nie przewiduje się dz	odernizacyinych.
Ulepszenie dotyczace przerw w ogrzewaniu $\mathbf{w}_{\mathbf{i}} \mathbf{i} \mathbf{w}_{d}$	\|Nie przewiduje się dz	odernizacyinych.

Projekt: 1
Licencla da: Energo Expert Mariusz Ważnlak (L01)
Licencla dla: Energo Expert Mariusz Ważnlak [L01]

Gimnazjum.	
Montaż zbiornika cWu z grzałką elektryczną.	
-	
	Suma: $\quad 77490,00$
6.3.4 Opis zastosowanych ulepszeń dotyczacych poprawy sprawnosicl systemu c.w.u.	
Usprawnienia termomodernizacyina	Opis zastosowanych usprawnień
Ulepszenie sprawności wytwarzania η_{g}	Uruchomienie cwu doprowadzonej z kotlowni gazowej usytuowanej w sqsiednim budynku Gimnazjum. Szacunkowe koszty określono w oparciu o kalkulacjẹ własną na podstawie aktualnych cenników Bistyp lub Sekocenbud z uwzględnieniem cen rynkowych.
Ulepszenie sprawnosci przesylu $\eta_{\text {d }}$	Unuchomienie cwu doprowadzonej z koltowni gazowes usytuowanej w sąsiednim budynku Gimnazjum.
Ulepszenie sprawności akumulacji $\eta_{\text {s }}$	Montaż zbiornika cwus z grzatką elektryczną. Szacunkowe koszty określono w oparciu o kalkulacje wasną na podstawie aktualnych cenników Bistyp lub Sekocenbud 2 uwzględnieniem cen rynkowych.

6.4. Ocena oplacainoścl I wybór optymainego wariantu przedslęwziẹcia termomodernizacyinego
poprawiajaqcego sprawnosć cleplną systemu grzewczego
6.4.1. Ocena oplacalności modernizacji instalacji grzowezej

		Stan istniejacy	Warlant 1
Oplata za 1 GJ na ogrzewanie	[2VGJ]	65,89	65,89
Opłata za 1 MW mocy zamówionej na ogrzewanie	[$2 / 1 / \mathrm{MW}$]	0,00	0,00
Inne koszty, abonament	[2]]	0,00	0,00
Sezonowe zapotrzebowanie na cieplo	[G.]	666,11	
Obliczeniowa moc ciepina systemu grzewczego	[MW]	0,1614	
Sprawność systemu grzewczego		0,626	0,715
Roczna oszczędnośc kosztów $\Delta 0$	[z1/2]	---	7081,58
Koszt modernizacii	[2]]	.-.	29274,00
SPBT	[lat]	---	4,13

[^8]| $\begin{aligned} & \text { 志 } \\ & \stackrel{N}{W} \\ & \text { Non } \end{aligned}$ | $\begin{aligned} & \stackrel{8}{0} \\ & \stackrel{+}{4} \\ & \stackrel{y}{k} \end{aligned}$ | 遃 | 8 | 吕 |
| :---: | :---: | :---: | :---: | :---: |

$\left\lvert\, \begin{aligned} & \text { 茳 } \\ & \stackrel{y}{*} \end{aligned}\right.$	$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & N \\ & N \end{aligned}$		$\left\|\begin{array}{l} 8 \\ 0 \\ 0 \\ 0 \\ F \end{array}\right\|$	8 $\stackrel{y}{4}$ $\stackrel{y}{8}$	号

Wariant 4		
	Usprawnienie	Koszt
$\mathbf{1}$	Modernizacja przegrody Strop zewnẹtrnny	71315,42
2	Moderizacia przegrody Sciana zewnettrna	249553,86
3	Modernizacia przegrody Dzs Wentylacja grawitacyina＇	5421,84
4	Modernizacja systemu grzewczego	29274,00
5	Audyt i／lub inna dokumentacja techniczna	2500,00
Cakowity koszt	358065,11	

Warlant 5		
	Usprawnienie	Koszt
1	Modernizacja przegrody Strop zewnettrny	71315,42
2	Modernizacja przegrody Ściana zewnettrna	249553,86
3	Modernizacja systemu grzewczego	29274,00
4	Audyt inub inna dokumentacja techniczna	2500,00
Calkowity koszt	352643,27	

Piojekt： 1
Licencla dla：Energo Expert Mariusz Wozniak［Lo1］

3	Modernizacja przegrody DZS Wentylacja grawitacyina＇
4	Modernizacja systemu cieptej wody užytkowej
$\mathbf{5}$	Modenizacja przegrody ODS Wentylacja grawitacyina＇
6	Modernizacja syetemu grzewczego
7	Audyt illub inna dokumentacja techniczna
Calkowity koszt	

Wariant 4				
	Usprawnienia			
$\mathbf{1}$	Modernizacia przegrody Strop zewnetrzny			
2	Modernizacja przegrody Sciana zewnętrzna			
3	Modernizacja przegrody DZS Wentylacja grawitacyina＇			
4	Modernizacja systemu grzewozego			
5	Audytiluab inna dokumentacja techniczna			
Calkowity koszt			Warlant 5	
:---:	:---			
	Usprawnienie			
1	Modernizacia przegrody Strop zewnętrny			
2	Modernizacja przegrody Sciana zewnẹtrzna			
3	Modernizacja systemu grzewczego			
4	Audyt tilub inna dokumentacja techniczna			
Calkowity koszt				

7．1．Wybrane izoptymallzowane ulepszenla termomodernizacyine zmierzalace do zmnlejszenia zapotrzebowanla na cieplo w wyniku zmniejszenia strat przenikania ciepla przez przegrody budowlane oraz

Lp．	Rodzaj i zakres ulepszenia termomodemizacyinego albo wariantu przedsięwzięcia termomodernizacyinego	Planowane koszty robót ［지］	$\begin{gathered} \text { SPBT } \\ \text { [lat] } \end{gathered}$
1.	Modernizacja przegrody Strop zewnętrzny	71315，42 27	8，80
2.	Modemizacja przegrody Ściana zewnętrzna	249553，86 zf	12，16
3.	Madernizacja przegrody DZS Wentylacja grawitacyina＇	5421，84 zt	22，62
4.	Modernizacja systemu cieplej wody użytkowej	77490，00 zt	32，00
5.	Modemizacja przegrody ODS＇Wentylacja grawitacyjna＇	82362，65 zt	69，68
6.	Modernizacja przegrody Ściana na gruncie	23948，81 zt	．．．
7.	Audyt iflub inna dokumentacja techniczna	2500，00 zł	－－－
	Modernizacja systemu grzewczega	29274，00	4，13

$$
\text { Wariant } 1
$$

Warlant 2		
	Usprawnienle	Koszt
1	Modernizacja przegrody Strop zewnętrzny	71315,42
2	Modernizacja przegrody Ściana zewnẹtrzna	249553,86

$\stackrel{\text { ® }}{ }$

$$
\frac{\text { Koszt }}{71315,42}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { 2500,00 } \\
\text { 541866,57 }
\end{array}
\end{aligned}
$$

\mathfrak{N} Projekt 1 1
Licencla da：Energo Expert Mariusz Wozziak［L01］

7．4．Obliczenia oszczzednosel kosztów wynikajacych 2 przeprowadzenia przedsięwziẹcia

\％	ช		！	$\begin{aligned} & \text { 8. } \\ & \stackrel{y}{6} \end{aligned}$	$\begin{aligned} & \stackrel{8}{8} \\ & \stackrel{y}{6} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{\overleftarrow{6}} \end{aligned}$	$\begin{aligned} & 5 \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \stackrel{0}{8} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \text { in } \end{aligned}$	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\sim}}$
9	त̇		！			$\begin{aligned} & \stackrel{.0}{\circ} \\ & \stackrel{\Gamma}{\stackrel{\circ}{7}} \end{aligned}$	$\begin{aligned} & \stackrel{8}{0} \\ & \stackrel{8}{8} \\ & \text { 荷 } \end{aligned}$		들	
¢	\bar{N}		$\begin{aligned} & \text { N } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { N్N } \\ & \text { Non } \\ & \text { Niv } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N} \\ & \text { W⿳亠丷厂犬 } \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$		
－	3		$\begin{aligned} & \text { E } \\ & \frac{\infty}{\circ} \end{aligned}$			$\begin{aligned} & \hline \stackrel{\rightharpoonup}{0} \\ & \stackrel{\omega}{0} \end{aligned}$	$\begin{aligned} & \text { 帯 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { \# } \\ & \text { Wemem } \end{aligned}$		\％
${ }_{8}^{5}$	，		\％	吕	\％	$\stackrel{\text { ®8，}}{\text { \％}}$	$\stackrel{\text { ® }}{\circ}$	$\stackrel{8}{8}$	$\stackrel{8}{8}$	怘
\％			\％	$\stackrel{8}{\circ}$	$\stackrel{8}{8}$	$\stackrel{\sim}{\circ}$	$\stackrel{\text { ® }}{\circ}$	\％	\％	$\stackrel{\sim}{0}$
$\stackrel{\square}{\square}$			8	N	N	N	$\underset{\sim}{N}$	${ }_{\text {N }}^{\sim}$	K	$\underset{0}{2}$
㝵	3	$\frac{2}{2}$	$$		$\begin{aligned} & \text { No } \\ & \text { 응 } \\ & \text { O } \end{aligned}$	$\begin{array}{ll} 9 & 0 \\ \cline { 1 - 3 } \\ \hline 0 & 0 \\ \hline \end{array}$				$\begin{array}{\|ll} \hline 8 & 0 \\ \hline \\ \hline 0 & 0 \\ \hline \end{array}$
	3	$\frac{2}{2}$								
$\begin{aligned} & \text { E. } \\ & \text { 号 } \\ & 3 \end{aligned}$			－	－	\sim	∞	＊	\cdots	ω	\cdots

Warlant 6		
	Usprawnienie	Koszt
1	Modernizacja przegrody Strop zewnętrny	71315,42
2	Modernizacja systemu grzewczego	29274,00
3	Audyt I／lub inna dokumentacja techniczna	2500,00
Cakowity koszt	103089,42	

Wariant 7		
	Usprawnienie	Koszt
1	Modernizacja systemu grzewczego	29274,00
2	Audyt illub inna dokumentacja techniczna	2500,00
Całkowity koszt	31774,00	

\footnotetext{
7．3．Wyniki komputerowych obliczeń dia poszczególnych wariantów przedsiẹwziẹcia

Wariant									
	［MW］	［GJ］	${ }^{\circ} \mathrm{C}$	m^{2}	m^{3}	m^{9}	m^{3}	W／m ${ }^{3}$	1／m
0	0，1614	666，11	19，21	1730，80	5511，36	5511，36	5511，36	30，80	0，50
1	0，1065	229，37	19，21	1730，80	5511，36	5511，36	5511，36		0，50
2	0，1065	229，37	19，21	1730，80	5511，36	5511，36	5511，36	20，99	0，50
3	0，1071	234，37	19，21	1730，80	5511，36	5511，36	5511，36	20，99	0，50
4	0，1071	294，37	19，21	1730，80	5511，36	5511，36	5511，36	20，99	0,50
5	0，1073	236，04	19，21	1730，80	5511，36	5511，36	5511，36	21，00	0，50
6	0，1460	599，27	19，21	1730，80	5511，36	5511，36	5511，36	28，02	0，50
7	0，1614	666，11	19，21	1730，80	5511，36	5511，36	5511，36	30，80	0，50

Projekt: \dagger
Licencja dia: Energo Expert Mariusz Waznlak [Lov]

8. Opis techniczny optymalnego wariantu przedsslẹwzieccia termomodernizacyinego, prewidzianego
do realizac|l do realizacl.

Usprawnienie: Modernizacja przegrody DZS_Drzwl zewnętrane, stare
Wymagany wspolczynnik U dla nowej stolarki: $1,300 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$
|Wymagany typ stolarki: Stolarka szczelna ($0,5<\mathrm{a}<1$)
Uwagi:

5	352643,2727	43380,55	$63,71 \%$	82000,00 270643,27	$23,25 \%$ $76,75 \%$	299746,78
6	103089,42 2t	20657,01	$26,17 \%$	82000,00 $79,54 \%$ 21089,42	$20,46 \%$	87626,00
7	31774,00 zt	11151,84	$10,47 \%$	82000,00 0,00	$100,00 \%$ $0,00 \%$	27007,90

Optymalnym wariantem przedsieqzalecia termomodemizacyinego jest wariant nr $\quad 1$ gdyz:

1. Zmniefszenie rocznego zapotrzebowania na energiẹ zużywaną nâ potrzeby ogrzewanla oraz podgrzewania
wody uìytkowel jest wieqksze niz: $\quad 15 \%$
2. Kwota kredytu nie przekracza wartości zadekiarowane]
$\begin{aligned} & \text { 3. Srodkl whasne konleczne na roalizacje przedsiewziecia termomodernizacyinego nle przekraczaja } \\ & \text { zadekiarowanych przez inwestora środków } w \text { hwocle } \\ & 82000,00 \text { zt }\end{aligned}$

Minimalna kwota wiasna (15\%) [z]]	81 279,98	Roczne zmniejszenie zapotrzzbowania na energiẹ [\%]	41,44
Maksymalna kwota dotacji (85\%) [z7]	460 586,59		
Planowane koszly calkowite [z]]	541866,57		
Roczna oszczędnosć kosztów energii* [zlfok]	41488,58	Roczna oszczędnosć kosztów energii [\%]	63,49

Projekt: 1 Hcencia dla: Energo Expert Mariusz Woznlak [L01]	26
\|PV	
\|Usprawnienie: produkcja energil elektryczneiz instalaçif fotowoltaicznej	
Wymagany zakres prac modernizacyinych: Instalacja fotowoltaiczna na dachu budymku	
Uwagi: szczegobowe obliczenia w załạczniku do audytu energetycznego.	

Projekt: 1	
Licencia da: Energo Expert Mariusz Wozziak LLO1)	25

[^9]|c.o.
|Usprawnienie: modernizacia instalacil grzewcze]
|Wymagany zakres prac modernizacyinych:
|Uwagi:

LED
Usprawnienie: modernizaça oświetlenia
\|Wymagany zakres prac modemizacyinych: wymiana oświettenia na energooszczędne LED
Uwwagi: szczegótowe obliczenia w odrẹnymm opracowaniu

28

Przewodnoşé cleplna materiatów		
Kod materialu	Opis	λ
		W/(m*k)
1	Tynk minerainy	1,000
2	Mur \mathbf{z} ceghly ceramicznej petnej	0,910
3	Mur z Siporsx na zaprawie cementowo-wapiennej 700	0,400
4	Tynk cementowo-wapienny	0,900
5	Posadzka cementowa	1,000
6	Plyta cementowo-wiorowa na spoiwie cementowym	0,230
7	Papa asfattowa izolacyina gr. 4 mm	0,180
8	Beton zwykly z kruszzwa kamiennego 1900	1,100
9	Piasek siredni	0,400
10	Parkiet	0,200
11	Terakota	1,300
12	Styropian 40	0,040
13	Strop kanalowy	1,410
14	3xpapa na lepiku	0,180
15	Pyty korytkowe	1,500
16	Dobrze wentylowane warstwy powietra	0,000
17	Phyty 2 wehy mineralnej	0,045
Opory przejmowanla clepla (mieqdzy powletrzem I strukturaml)		
Kod materiatu	Opls	$\boldsymbol{R}_{\text {z }}$ lub \boldsymbol{R}_{40}
		$\mathrm{m}^{2} \cdot \mathrm{KW}$
60	Opór przejmowania ciepla po stronie zewnętrznej (poziomy strumieŕ ciepla)	0,040
61	Opór przejmowania ciepla po stronie wewnętrznej (poziomy strumień ciepla)	0,130
62	Opór przejmowania ciepla po stronie zewnẹtrznej (strumień ciepla w dól)	0.040
63	Opór przeimowania ciepla po stronie wewnętrznej (strumień ciepta w dofl)	0,170
64	Opór przejmowania ciepla po stronie wewnętrzej (strumierí ciepla w gobrę)	0,040
65	Opor przejmowaria ciepla po stronie wewnętrnej (strumieri ciepla w góre)	0,100
66	Opór przeimowania ciepla po stronie zewnẹtrznej (strumierí ciepla w dóf)	0,100
67	Opór przejmowania ciepta po stronie wewnętrneej (strumień ciepta w dól)	0,100

Projokt: 1	
Licencla dla: Energo Expert Mariusz Wazilak [Lo1]	27

1. Obliczenie wspótczynników przenikania ciepla przegród w stanie istniejącym
2. Obliczenie zapotrzebowania na ciepto i moc cieplną na potrzeby c.o. i c.w.u.
3. Efekt ekologiczny termomodernizacij budynku
4. Analiza zužycia energii elektyczznej
5. Instalacja fotowoliaiczna
6. Tabela zbiorcza audytu
7. Dokumentacja fotograficzna

Kody Element Material		Opis	d	λ	R	$U_{\text {c }}$	
		m	W/(m-K)	$m^{2} \cdot \mathrm{~K} / \mathrm{W}$	$\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		
7	Podloga na gruncle_piwnica, przegroda jednorodina						
	62		Opór przejmowania ciepla po stronie zewnętrznej (strumień ciepla w d dí)			0,04	-
	5	Posadzka cementowa	0,020	1,000	0,020	-	
	6	Plyta cementowo-wiórowa na spoiwie cementowym	0,050	0,230	0,217	-	
	7	Papa asfaltowa izolacyjna gr. 4 mm	0,010	0,180	0,056	-	
	8	Beton zwykły 2 kruszywa kamiennego 1900	0,200	1,100	0,182	-	
	9	Piasek sredni	0,100	0,400	0,250	-	
	63	Opór przejmowania ciepla po stronie wewnẹtrznej (strumieŕ ciepla w d ${ }^{\prime}$)			0,17	-	
	Grubosté calkowita i U_{k}		0,38	-	0,93	1,07	
8	Podłoga na gruncie_parter, przegroda jednorodna						
	62	Opór przejmowania ciepla po stronie zewnętrznej (strumień ciepla w d61)			0,04	-	
	10	Parkiet	0,019	0,200	0,095	-	
	5	Posadzka cementowa	0,020	1,000	0,020	-	
	6	Plyta cementowo-wiorowa na spoiwie cementowym	0,050	0,230	0,217	-	
	7	Papa asfaltowa izolacyjna gr. 4 mm	0,010	0,180	0,056	-	
	8	Beton zwykly z kruszywa kamiennego 1900	0,200	1,100	0,182	-	
	9	Piasek Średni	0,100	0,400	0,250	-	
	63	Opór przejmowania ciepla po stronie wewnętrznej (strumień ciepla w d 'f)			0,17	-	
	Grubosć calkowita i $\boldsymbol{U}_{\mathbf{k}}$		0,40	\cdot	1,03	0,97	

Obliczenia wartosci wspblczynuikow U elementow budowlanych							
Obliczenia wartosci wespólczynników U elementów budowlanych							
Kody Element Materiat		Opls	d	λ	R	u_{6}	
		m	W/(m*K)	$\mathrm{m}^{2} \mathrm{KWW}$	$W /\left(m^{2}+K\right)$		
1	Drzwi zewnętrzne_stare, przegroda jednorodna						
	Grubost calkowita i U_{k}		-	-	-	2,6	
2	Drzwi zewnetrane_nowe, przegroda jednorodna						
	Grubosé caikowital U_{k}		-	-	-	1,6	
3	Okno zewnętrzne_PCV_nowe, przegroda jednorodna						
	Grubość całkowita i U_{k}		-	-	-	1,3	
4	Okno zewnętrzne_drewnlane_stare, przegroda \|ednorodna						
	Grubosé calkowital U_{k}		-	-	-	3,1	
5	Sciana zewnẹtrzna, przegroda jednorodna						
	60		Opór przejmowania ciepla po stronie zewnętrznej (poziomy strumień ciepła)			0,04	-
	1	Tynk mineralny	0,015	1,000	0,015	-	
	2	Mur z cegly ceramicznej pelnej	0,250	0,910	0,275	-	
	3	Mur z Siporex na zaprawie cementowo-wapiennej 700	0,120	0,400	0,300	-	
	4	Tynk cememowo-wapienny	0,015	0,900	0,017	-	
	61	Opór przejmowania ciepła po stronie wewnętrznej (poziomy strumień ciepla)			0,13	-	
	Grubosć całkowita i u_{k}		0,40	-	0,78	1,29	
6	Ściana na gruncie, przegroda jednorodna						
	60	Opór przejmowania ciepla po stronie zewnẹtrznej (poziomy strumień ciepla)			0,04	-	
	2	Mur z cegly ceramicznei petnej	0,380	0,910	0,418	-	
	61	Opór przejmowania ciepla po stronie wewnẹtrznei (poziomy strumien ciepla)			0,13	-	
	Grubosić calkowita i u_{k}		0,38	-	0,59	1,70	

Projekt: 1
Licencia da: Energo Expert Mariusz Woźniak [L01]
Zatącznlk nr 2 Obliczenle zapotrzebowanla na clepło I moc cieplną na potrzeby c.o. I cwu

| \|UPROSZCZONY RAPORT OBLLCZEN ZAPOTRZEBOWANIA NA WOC I ENERGAE CIEPLLMA BUDYNKU |dane ogólne | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | |
| \|Nazwa budynku: | | | | \|Pizedszkole Publiczne | | | | | |
| \|Typ budynku: | | | | \|OŚswiata | | | | | |
| \|Rok budowy: | | | | \|1990 | | | | | |
| \|Miejscowosć: | | | | \|kobzzenica | | | | | |
| Stacja meteorologiczna: | | | | \| y ydgoszcz | | | | | |
| Strefa klimatyczna: | | | | \|11 | | | | | |
| \|Maksymalna temperatura zewnętrzna θ_{a} : | | | | \|-18,0 | | | $1{ }^{\circ}$ | | |
| Średnia temperatura wewnętrzna $\mathrm{Q}_{\text {: }}$: | | | | \|19,2 | | | c | | |
| \|Temperatury dla poszczegoinych miesiepcy | | | | | | | | | |
| \|Miesiac ${ }^{\text {\|I }}$ \|'II |'II | | | | \|VII | \|VIII | fix | ${ }^{1}$ | \|xı | \| $\times 11$ |
| $\theta_{0}\left[{ }^{\circ} \mathrm{C}\right]$ $-0,7$ 0,0 0,0 | | 14,2 | 14,5 | 17,3 | 16,4 | 11,0 | 8,1 | 5,2 | 1,9 |
| GEOMETRIA BUDYNKU | | | | | | | | | |
| Powierzchnia zabudowy A_{9} : | | | | \|1271,3 | | | $1 \mathrm{~m}^{2}$ | | |
| Powierzchnia netto A_{n} : | | | | \| 1730,8 | | | $1 \mathrm{~m}^{2}$ | | |
| Powierzchnia a regulowanel temperaturze A_{9} : | | | | \|1730,8 | | | $1 \mathrm{~m}^{2}$ | | |
| Kubatura po obrysie zewnętrznym V_{a} : | | | | \|7120,8 | | | $1 \mathrm{~m}^{3}$ | | |
| Kubatura netto V: | | | | \|5511,4 | | | $1 \mathrm{~m}^{3}$ | | |
| Kubatura cgrzewana V_{f} : | | | | \| 5511,4 | | | $1 \mathrm{~m}^{3}$ | | |
| Powierzchnia przegród oddzielających budynek od środowiska zewnętranogo i części nieogrzewanej A : | | | | 3547,9 | | | m^{2} | | |
| Powierzchnia ścian zewnętrznych $A_{w, s}$: | | | | \|933,4 | | | $1 \mathrm{~m}^{2}$ | | |
| Wspotazynnik ksziatu ANa | | | | 10.5 | | | $11 / \mathrm{m}$ | | |
| WSPOLLCZYNNUKI STRAT CIEPLA | | | | | | | | | |
| Średni wspólczymnik nagrzewania $\mathrm{f}_{\text {PH: }}$: | | | | \|4,0 | | | $1 \mathrm{~W} / \mathrm{m}^{2}$ | | |
| Wspdczaynnik strat ciepła przegrod zewnętrznych $H_{H_{8} \text { : }}$ | | | | \|2301,4 | | | W/K | | |
| Wspólczynnik strat ciepła przegród wewnẹtrznych H_{xy} : | | | | \|... | | | \|WK | | |
| Wspotczynnik strat clepla od gruntu $\mathrm{H}_{\text {in }}$: | | | | 166,8 | | | \|WK | | |
| Wspótczynnik strat ciepła od przegród graniczących \mathbf{z} środowiskiem nieogrzewanymi H_{iv} : | | | | 0,0 | | | WK | | |
| Wspolczynnik strat ciepla przez przenikanie H_{T} : | | | | \|2468,3 | | | WK | | |
| Wspotczynnik strat ciepla na wentylacje $\mathrm{H}_{\text {ve: }}$: | | | | [625,3 | | | \|WK | | |
| Cakkowity wspóczynnik strat ciepla H : | | | | \|3093,6 | | | \|WK | | |

\%
§

MOC CIEPLNA													
Projektowana strata ciepla przez przenikanie $\Phi_{\text {T: }}$							192,95			kW			
Projektowana wentylacyjna strata ciepla Φ_{V} :							68,41			kW			
Projektowana nadwẏ̇ka mocy ciepinej $\Phi_{\text {PH: }}$:							\|6,92			\|kW			
Cakowite projektowane obciqzenie ciepine $\Phi_{\text {hil }}$:							161,35			\|kW			
\|Projektowana moc żódla ciepla ¢ ${ }^{\text {: }}$							161,35			\|kW			
Projektowane obciazzenie cieplne na powierzchnie Φ_{A} :							93,22			W/m ${ }^{2}$			
Projektowane obcilazenie ciepine na kubature Φ_{v} :							29,28			W/m m^{3}			
WENTYLACJA - STAEFY CIEPLNE													
Rodzaj budynku:					Oswiata								
Wentylicja grawtacy ${ }^{\text {ne }}$													
Nazwa pomieszczenia strefy	A_{1}	v	β	$V_{\text {va, }}$	$\mathrm{b}_{\text {val }}$	$V_{\text {vae } 2}$	$\mathrm{b}_{\text {va, } 2}$	$V_{\text {ve. } 3}$	$\mathrm{b}_{\mathrm{va}, 3}$	$\mathrm{v}_{\mathrm{va}, 4}$	bvat	H_{ve}	
	m^{2}	m^{3}	-	$\mathrm{m}^{3 / \mathrm{h}}$		$\mathrm{m}^{3 / h}$	-	$\mathrm{m}^{3} \mathrm{~h}$	-	$\mathrm{m}^{3 / h}$	-	W/K	
Strefa 0	$\begin{array}{r} 1377, \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 4380, \\ 80 \\ \hline \end{array}$	0,20	$\begin{array}{r} 2777, \\ 04 \\ \hline \end{array}$	0,20	$\begin{array}{r} 876,1 \\ \hline 6 \\ \hline \end{array}$	0,20	$\begin{array}{\|r\|} \hline 555,4 \\ \hline \end{array}$	0,80	$\begin{array}{r} 876,1 \\ 6 \end{array}$	0,80	625,3	
ZAPOTRZEBOWANIE NA CIEPLO													
Średni strumień wewnętrznych zysków ciepla $\Phi_{\text {bri }}$							3,2			W/m ${ }^{\text {2 }}$			
Zyski wewnettrane $\mathrm{Q}_{\mathrm{m} \text { : }}$							48517,79			kWh/rok			
Zyski od storica $\mathrm{Q}_{\text {sol }}$:							133867,37			\|WWhrok			
Caakowite zyski ciepla $\mathrm{Q}_{\text {Hant }}$							182385,16			\|kWh/rok			
Cakkowite straty ciepla preez przenikanie $Q_{\text {Hur }}$:							261109,86			\|kWh/rok			
Calkowite straty ciepla przez wentyiacie $Q_{\text {Husa }}$							61821,23			\| WWhrok			
Catkowite straty ciepla przez wentytacie i przenikanie $\mathrm{Q}_{\text {H.,.M: }}$							\|305849,77			kWhirok			
Roczne zapotrzebowanie ciepla na energię ulytkową dla ogrzewania i wentylacij $Q_{\text {H.nd: }}$:							185031,26			kWhirok			
Pojernnostéc cieplna budynku C_{m} :							\|450008000,00			J/K			
Stala czasowa τ :							\|40,41			\|h			
\|Czas trwania sezonu grzewczego tse:							\|5535,91			\|h			
${ }^{\text {j Miesiac }}$	1	1		v		v	\|VII						XII
$\underline{L 60}^{\text {[}}$ dni]	31,0	28,0	1,0	28.5	0,0	0,0	0,0	0,0	20,1	31,0	30,0	31,0	

[^0]: Oane zawarte w onnejscym zaswbadczentu mozna sprowdoc podajac nic wenticacyins
 zesiwiadccenia w publicznym serwisie interreeboryin Jiby Archteltoon: wnw. ithaamctibektow of

[^1]: Dane zawarte w niniejszym zaświadcrenlu moz̀na sprawtzic podajac nr weryfikacyiny
 zaswiadczenia w publicznym serwisie internetowym lizy Architektów: www. crbaarchitektow. p lub kontaictufac sie berposrednio \mathbf{z} wiasciwa Ofregows izba Architektów RP

[^2]: Zgodne z ant 12 ust 7 mu ustawy Prawc bucowlane podstawe do wykonywania samoozielnych turkty
 technicznych w bucciwnictwie stanowngic techincznych w budcwhictwie stanow wpis do centralnego iejestin Gownego inspektora Naczoil Budowlanego oraz wpis ra liste czionkow wascmej izby samoradu zawadowegn
 61. Warszawie za posrednictwem Kujawsko Pomorskiei Quregowel izoy Inzynienow Budowntictwa w Bydgoszczy w teminie 14 d 1 pa daty fel doreczenia

[^3]: * Weryfikację poprawnosct danych w niniejszym zaświadczeniu można sprawdzić za pomocą numeru weryfikacyinego zašwiadczenia na stronie Polskief izby Inżynierow Budownictwa www.piib.org.pl lub kontaktujac się z blurem whasciwel Okregowej izby inżynierow Budownictwa.

[^4]: *Werytikacię poprawności danych w niniejszym zaświadczeniu moźna sprawdzić za pomoca numeru weryfikacyinego zaświadczenia na stronie Poiskiej lzby Inżynierów Budownictwa www.piib org.pl lub kontaktując się z biurern whasciwej Okręgowej lzby Inżynierów Budownictwa

[^5]: * Weryfikację poprawnosci danych w niniejszym zaswiadczeniu można sprawdzić za pomocą numeru weryfikacyjnego zaświadczenia na stronle Polskiej Izby Inźynierów Budownictwa www.piib.org.pl lub kontaktując się z biurem właściwej Okręgowej izby Inżynierów Budownictwa.

[^6]:

[^7]: 6．3．3 Uproszczona kalkulacja kosztów modernizacij instalacif cwu dia wariantu optymalnego

 | Planowane usprawnienia： | Naklady |
 | :--- | :--- |
 | Uruchomienie cwu dostarczanej 2 kotlowni gazowaj usytuowanej w sqsiednim budynku | $\mathbf{4 9 2 0 0 , 0 0}$ |

 | Planowane usprawnienia： | Naklady |
 | :--- | :--- |
 | Uruchomienie cwu dostarczanej \mathbf{z} kotlowni gazowej usytuowanej \mathbf{w} sassiednim budynku | |

 | Planowane usprawnienia： | Nakłady |
 | :--- | :--- |
 | Uruchomienie cwu dostarczanej 2 kotlowni gazowej usytuowanej w sasiednim budymku | $\mathbf{4 9 2 0 0 , 0 0}$ |

[^8]: Ogrzewanie z kotlowni usytuowanej w sasiednim budynku Gimnazjum. Kociol gazowy niskotemperaturowy producent Viessmann typ Vitoplex 100 SX 1 Grzejniki zeliwne w dobrym stanie technicznym bez glowic termostatycznych. Przewiduje się montaz glowic termostatycznych, ptukanie chemiczne istniejqcej instalacij z regulacja hydrauliczną.
 Szacunkowe koszty określono w oparciu o kalkulacje whasna na podstawie aktualnych cennikow Bistyplub Sekocenbud z uwzględnienlem cen rynkowych.

[^9]: |Usprawnienie: Modernizacja wentylacil grawitacy|nej
 |Uwagi:
 $\left|\begin{array}{l}\text { Montaz w piwnicy (pomiessczzenie kuchenne) wentylyacji mechanicznej z odzyskiem ciepda } 85 \% \text {. Szacunkowe koszty } \\ \text { okreSlonn woparciu o kalkulacje wasna na podstawie aktualnych cennikoww Bistyp lub Sekocenbud } z \text { uwzgleqnieniem }\end{array}\right|$ con rynkowych.
 c.w.u.
 |Usprawnienie: modernizacja instalacji cleplea wody užytkowej
 Wymagany zakres prac modemizacyinych:
 |Uwag:

 | Stan obecny: elektryczne akumulacyine podgrzewaccze wody, producent Beretta, moc $4,8 \mathrm{~kW}$, poj. $120 \mathrm{dm3}$, rok |
 | :--- | :--- |
 | produkcij 2011, szt. 1 (kuchnia) oraz elektryczne przeplywowe ordgrzewacze wody, producent Biawar lub Delpo, moc |

